再生(生物学)
纤维软骨
弯月面
细胞生物学
间充质干细胞
软骨
细胞外基质
再生医学
解剖
组织工程
硫氧化物9
骨关节炎
生物医学工程
化学
干细胞
关节软骨
生物
医学
病理
基因表达
物理
光学
替代医学
基因
入射(几何)
生物化学
作者
Wenqiang Yan,Maihemuti Maimaitimin,Yue Wu,Yifei Fan,Shuang Ren,Fengyuan Zhao,Chenxi Cao,Xiaoqing Hu,Jin Cheng,Yingfang Ao
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-11-08
卷期号:9 (45)
被引量:10
标识
DOI:10.1126/sciadv.adg8138
摘要
Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus–like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.
科研通智能强力驱动
Strongly Powered by AbleSci AI