Attitude- and cost-driven consistency optimization model for decision-making with probabilistic linguistic preference relation

概率逻辑 一致性(知识库) 偏好关系 偏爱 成对比较 计算机科学 参数统计 数学 人工智能 统计
作者
Peng Wang,Ran Dang,Пэйдэ Лю,Dragan Pamučar
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:186: 109748-109748 被引量:19
标识
DOI:10.1016/j.cie.2023.109748
摘要

Probabilistic linguistic term set (PLTS) conveys the preference for a linguistic term by assigning a probability distribution, which can more correctly and flexibly reflect the decision-maker (DM)’s evaluation information and make the decision outcome more scientific and rational. Probabilistic linguistic preference relation (PLPR) allows the DM to represent decision information for pairwise comparison of alternatives with PLTS, allowing a more comprehensive representation of the DM’s valid preferences. Consistency is essential in the preference decision-making process and directly influences the dependability of the final results. Therefore, this paper develops a minimum cost consistency adjustment mechanism based on attitudes and emotions for solving the decision-making problem with PLPR. Firstly, a new PLTS normalization model is proposed to handle the unknown information, considering the DM’s preferred attitude and emotional tone. Secondly, the expected parametric multiplicative consistency index for PLPR is defined, and parameter settings improve the flexibility and relevance of the consistency. Then, the concepts of linguistic hesitancy, probabilistic uncertainty, and probabilistic incompleteness are defined for the PLTS that can reflect the psychological characteristics of DMs’ hesitancy; they are then used to measure hesitation and unit consistency adjustment costs. Next, a new distance measure is established between the two PLTSs to measure the difference between the preference information. Subsequently, a direction-guided minimum cost consistency optimization model with unacceptable consistency is constructed for the PLPR. Finally, the usefulness of the suggested decision-making method with PLPR is tested using a numerical example of talent selection, and parametric sensitivity analysis and comparative analysis are utilized to show the benefits of the suggested methodology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一应助小蓝采纳,获得10
2秒前
3秒前
开心秋天完成签到 ,获得积分10
3秒前
jjgod发布了新的文献求助10
3秒前
CherylZhao完成签到,获得积分10
4秒前
Eilleen发布了新的文献求助10
4秒前
何静发布了新的文献求助10
4秒前
5秒前
超级的鞅发布了新的文献求助10
5秒前
斑其发布了新的文献求助10
5秒前
7秒前
7秒前
智慧发布了新的文献求助30
7秒前
DTS发布了新的文献求助10
8秒前
YI_JIA_YI完成签到,获得积分10
8秒前
小痞子完成签到 ,获得积分10
8秒前
苗灵雁完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
善学以致用应助超级的鞅采纳,获得10
9秒前
猪猪hero应助elang采纳,获得10
10秒前
weiyi发布了新的文献求助10
11秒前
佩琪完成签到,获得积分10
11秒前
包容秋珊发布了新的文献求助10
11秒前
缥缈的涵菡完成签到 ,获得积分10
12秒前
冷酷的溜溜梅完成签到 ,获得积分10
12秒前
13秒前
kaikai完成签到,获得积分10
13秒前
鱼鱼鱼发布了新的文献求助10
13秒前
带善人完成签到,获得积分10
13秒前
14秒前
14秒前
科研通AI6应助zhangyulong采纳,获得10
14秒前
爆爆发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802