Attitude- and cost-driven consistency optimization model for decision-making with probabilistic linguistic preference relation

概率逻辑 一致性(知识库) 偏好关系 偏爱 成对比较 计算机科学 参数统计 数学 人工智能 统计
作者
Peng Wang,Ran Dang,Пэйдэ Лю,Dragan Pamučar
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:186: 109748-109748 被引量:19
标识
DOI:10.1016/j.cie.2023.109748
摘要

Probabilistic linguistic term set (PLTS) conveys the preference for a linguistic term by assigning a probability distribution, which can more correctly and flexibly reflect the decision-maker (DM)’s evaluation information and make the decision outcome more scientific and rational. Probabilistic linguistic preference relation (PLPR) allows the DM to represent decision information for pairwise comparison of alternatives with PLTS, allowing a more comprehensive representation of the DM’s valid preferences. Consistency is essential in the preference decision-making process and directly influences the dependability of the final results. Therefore, this paper develops a minimum cost consistency adjustment mechanism based on attitudes and emotions for solving the decision-making problem with PLPR. Firstly, a new PLTS normalization model is proposed to handle the unknown information, considering the DM’s preferred attitude and emotional tone. Secondly, the expected parametric multiplicative consistency index for PLPR is defined, and parameter settings improve the flexibility and relevance of the consistency. Then, the concepts of linguistic hesitancy, probabilistic uncertainty, and probabilistic incompleteness are defined for the PLTS that can reflect the psychological characteristics of DMs’ hesitancy; they are then used to measure hesitation and unit consistency adjustment costs. Next, a new distance measure is established between the two PLTSs to measure the difference between the preference information. Subsequently, a direction-guided minimum cost consistency optimization model with unacceptable consistency is constructed for the PLPR. Finally, the usefulness of the suggested decision-making method with PLPR is tested using a numerical example of talent selection, and parametric sensitivity analysis and comparative analysis are utilized to show the benefits of the suggested methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的棒棒糖完成签到 ,获得积分10
2秒前
2秒前
SONG关注了科研通微信公众号
2秒前
3秒前
ding应助呆头采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
axin应助科研通管家采纳,获得10
3秒前
terence应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
852应助科研通管家采纳,获得10
3秒前
hh应助科研通管家采纳,获得10
3秒前
sun发布了新的文献求助10
4秒前
4秒前
zhu完成签到,获得积分10
4秒前
酷波er应助缚大哥采纳,获得10
5秒前
李健应助明理雨筠采纳,获得10
5秒前
wang发布了新的文献求助10
7秒前
木头人给step_stone的求助进行了留言
7秒前
魏伯安完成签到,获得积分10
8秒前
朴素尔岚发布了新的文献求助10
9秒前
科研通AI5应助nextconnie采纳,获得10
9秒前
务实的犀牛完成签到,获得积分10
10秒前
10秒前
Blue_Pig发布了新的文献求助10
10秒前
11秒前
科研通AI2S应助橙子fy16_采纳,获得10
12秒前
LGJ完成签到,获得积分10
12秒前
wang完成签到,获得积分10
14秒前
15秒前
16秒前
脑洞疼应助Blue_Pig采纳,获得10
18秒前
19秒前
Akim应助危机的尔蝶采纳,获得10
20秒前
SONG发布了新的文献求助50
20秒前
明理雨筠发布了新的文献求助10
21秒前
小刘一定能读C9博完成签到 ,获得积分10
22秒前
1097完成签到 ,获得积分10
23秒前
缚大哥发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849