Temporal Segment Neural Networks-Enabled Dynamic Hand-Gesture Recognition for Industrial Cyber-Physical Authentication Systems

计算机科学 卷积神经网络 人工智能 手势 指纹(计算) 人工神经网络 特征提取 认证(法律) 手势识别 光流 机器学习 模式识别(心理学) 数据挖掘 计算机安全 图像(数学)
作者
Yuanlong Cao,Junjie Li,Chinmay Chakraborty,Le Qin,Tao Lei,Xun Shao
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 5315-5326 被引量:5
标识
DOI:10.1109/jsyst.2023.3306380
摘要

In recent years, the data security and privacy protection of human cyber-physical systems (CPSs) in the industrial Internet of Things (IoT) have attracted much research interest. In the meantime, applying human–machine identity authentication mechanism to the CPSs has been considered as a promising solution for secure and privacy-enhancing authentication in industrial IoT. In view of the application limitation of traditional authentication methods, especially during the current COVID-19 virus outbreak, the mainstream face recognition and fingerprint recognition methods are constrained by wearing masks and gloves. Recently, with the flourishing studies of artificial intelligence (AI), many AI-based dynamic gesture recognition methods have been developed for the application of human–computer identity recognition. A temporal segment network (TSN) has been designed with a dual-stream convolutional neural network inside to match the flexibility of gesture transformations. Although it has achieved a success in accuracy, the TSN still has the main shortcomings of the insufficient temporal information fusion and the high cost of optical flow feature extraction. In this article, we propose an enhanced temporal segment network (dubbed as $e$ -TSN). First, hand skeleton features are used instead of optical flow features. Second, a short-term networks (long short-term memory) is utilized as segmental consensus function to improve the accuracy and reduce the feature extraction cost. Experiments demonstrate that the $e$ -TSN can achieve an accuracy of 91.3% on the Jester dataset. Finally, a human–machine identity verification system is developed based on the $e$ -TSN, which can effectually accomplish the human–machine identity in real time and has a high promotion value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书虫发布了新的文献求助10
2秒前
2秒前
阉太狼完成签到,获得积分10
3秒前
Gdhdjxbbx完成签到,获得积分10
3秒前
小蘑菇应助CHBW采纳,获得10
3秒前
爆米花应助hhm采纳,获得10
3秒前
4秒前
kk完成签到,获得积分10
4秒前
5秒前
熊大完成签到,获得积分10
5秒前
打打应助Leeu采纳,获得30
6秒前
Hannahcx发布了新的文献求助10
7秒前
7秒前
小蘑菇应助chang采纳,获得10
7秒前
wyf发布了新的文献求助10
7秒前
7秒前
Zer关闭了Zer文献求助
7秒前
wfwl完成签到,获得积分10
8秒前
调皮的秋柔完成签到,获得积分10
8秒前
8秒前
酷波er应助Solitude采纳,获得10
8秒前
小周周发布了新的文献求助10
9秒前
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
英俊的铭应助nzxnzx采纳,获得10
12秒前
misu完成签到,获得积分10
12秒前
Ava应助Emma采纳,获得10
13秒前
mm发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
tree发布了新的文献求助10
14秒前
QCC完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
机灵柚子发布了新的文献求助10
15秒前
没有昵称完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650