Temporal Segment Neural Networks-Enabled Dynamic Hand-Gesture Recognition for Industrial Cyber-Physical Authentication Systems

计算机科学 卷积神经网络 人工智能 手势 指纹(计算) 人工神经网络 特征提取 认证(法律) 手势识别 光流 机器学习 模式识别(心理学) 数据挖掘 计算机安全 图像(数学)
作者
Yuanlong Cao,Junjie Li,Chinmay Chakraborty,Le Qin,Tao Lei,Xun Shao
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 5315-5326 被引量:5
标识
DOI:10.1109/jsyst.2023.3306380
摘要

In recent years, the data security and privacy protection of human cyber-physical systems (CPSs) in the industrial Internet of Things (IoT) have attracted much research interest. In the meantime, applying human–machine identity authentication mechanism to the CPSs has been considered as a promising solution for secure and privacy-enhancing authentication in industrial IoT. In view of the application limitation of traditional authentication methods, especially during the current COVID-19 virus outbreak, the mainstream face recognition and fingerprint recognition methods are constrained by wearing masks and gloves. Recently, with the flourishing studies of artificial intelligence (AI), many AI-based dynamic gesture recognition methods have been developed for the application of human–computer identity recognition. A temporal segment network (TSN) has been designed with a dual-stream convolutional neural network inside to match the flexibility of gesture transformations. Although it has achieved a success in accuracy, the TSN still has the main shortcomings of the insufficient temporal information fusion and the high cost of optical flow feature extraction. In this article, we propose an enhanced temporal segment network (dubbed as $e$ -TSN). First, hand skeleton features are used instead of optical flow features. Second, a short-term networks (long short-term memory) is utilized as segmental consensus function to improve the accuracy and reduce the feature extraction cost. Experiments demonstrate that the $e$ -TSN can achieve an accuracy of 91.3% on the Jester dataset. Finally, a human–machine identity verification system is developed based on the $e$ -TSN, which can effectually accomplish the human–machine identity in real time and has a high promotion value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助小董不懂采纳,获得10
1秒前
nhb0912完成签到,获得积分20
1秒前
萌神_HUGO发布了新的文献求助10
2秒前
江任意西完成签到 ,获得积分10
2秒前
junjie发布了新的文献求助10
2秒前
ln177发布了新的文献求助10
2秒前
77完成签到 ,获得积分20
3秒前
西门访天应助hwezhu采纳,获得10
3秒前
吴小苏发布了新的文献求助10
4秒前
俏皮连虎完成签到,获得积分10
4秒前
5秒前
CodeCraft应助鱼跃采纳,获得10
5秒前
仁爱发卡完成签到,获得积分10
6秒前
脑洞疼应助shiyin采纳,获得10
7秒前
zxvcbnm发布了新的文献求助10
7秒前
7秒前
8秒前
善学以致用应助唐瑾瑜采纳,获得10
8秒前
悲凉的康乃馨完成签到,获得积分10
9秒前
李爱国应助知性的千秋采纳,获得10
9秒前
bkagyin应助时光采纳,获得10
9秒前
李爱国应助热情语堂采纳,获得10
10秒前
方文杰完成签到,获得积分10
10秒前
wfw完成签到,获得积分20
10秒前
11秒前
NDrDicp完成签到,获得积分10
11秒前
为什么说对不起完成签到,获得积分10
12秒前
12秒前
酷酷晓发布了新的文献求助30
12秒前
12秒前
从南到北完成签到,获得积分10
13秒前
自然函完成签到 ,获得积分10
13秒前
Ava应助Annie_Lee采纳,获得10
14秒前
方文杰发布了新的文献求助10
14秒前
14秒前
15秒前
无情山水完成签到,获得积分10
15秒前
15秒前
魁梧的鞋垫完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148736
求助须知:如何正确求助?哪些是违规求助? 2799755
关于积分的说明 7836820
捐赠科研通 2457225
什么是DOI,文献DOI怎么找? 1307810
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663