Temporal Segment Neural Networks-Enabled Dynamic Hand-Gesture Recognition for Industrial Cyber-Physical Authentication Systems

计算机科学 卷积神经网络 人工智能 手势 指纹(计算) 人工神经网络 特征提取 认证(法律) 手势识别 光流 机器学习 模式识别(心理学) 数据挖掘 计算机安全 图像(数学)
作者
Yuanlong Cao,Junjie Li,Chinmay Chakraborty,Le Qin,Tao Lei,Xun Shao
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 5315-5326 被引量:5
标识
DOI:10.1109/jsyst.2023.3306380
摘要

In recent years, the data security and privacy protection of human cyber-physical systems (CPSs) in the industrial Internet of Things (IoT) have attracted much research interest. In the meantime, applying human–machine identity authentication mechanism to the CPSs has been considered as a promising solution for secure and privacy-enhancing authentication in industrial IoT. In view of the application limitation of traditional authentication methods, especially during the current COVID-19 virus outbreak, the mainstream face recognition and fingerprint recognition methods are constrained by wearing masks and gloves. Recently, with the flourishing studies of artificial intelligence (AI), many AI-based dynamic gesture recognition methods have been developed for the application of human–computer identity recognition. A temporal segment network (TSN) has been designed with a dual-stream convolutional neural network inside to match the flexibility of gesture transformations. Although it has achieved a success in accuracy, the TSN still has the main shortcomings of the insufficient temporal information fusion and the high cost of optical flow feature extraction. In this article, we propose an enhanced temporal segment network (dubbed as $e$ -TSN). First, hand skeleton features are used instead of optical flow features. Second, a short-term networks (long short-term memory) is utilized as segmental consensus function to improve the accuracy and reduce the feature extraction cost. Experiments demonstrate that the $e$ -TSN can achieve an accuracy of 91.3% on the Jester dataset. Finally, a human–machine identity verification system is developed based on the $e$ -TSN, which can effectually accomplish the human–machine identity in real time and has a high promotion value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助核桃采纳,获得10
刚刚
Porifera完成签到,获得积分10
刚刚
刚刚
笋蒸鱼发布了新的文献求助10
刚刚
余云开发布了新的文献求助50
1秒前
顾矜应助板凳采纳,获得10
1秒前
带象发布了新的文献求助20
2秒前
3秒前
3秒前
阿曼尼完成签到 ,获得积分10
3秒前
英俊的铭应助LILING采纳,获得10
3秒前
iRan完成签到,获得积分10
4秒前
落忆完成签到 ,获得积分10
4秒前
蜡笔完成签到,获得积分10
4秒前
趁微风不躁完成签到,获得积分10
4秒前
通~发布了新的文献求助10
5秒前
5秒前
张磊完成签到,获得积分10
5秒前
冷艳的太君完成签到,获得积分10
6秒前
6秒前
科目三应助wwwww采纳,获得10
7秒前
7秒前
7秒前
8秒前
CH完成签到 ,获得积分10
8秒前
xiuxiu_27发布了新的文献求助10
9秒前
April发布了新的文献求助10
9秒前
打打应助核桃采纳,获得10
9秒前
9秒前
elena发布了新的文献求助10
9秒前
现代的战斗机完成签到,获得积分10
9秒前
刘星星发布了新的文献求助10
10秒前
萧秋灵完成签到,获得积分10
10秒前
10秒前
11秒前
YaoX完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
YE发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740