亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated seismic semantic segmentation using attention U-Net

计算机科学 分割 卷积神经网络 深度学习 残余物 工作流程 人工智能 超参数 数据集 地质学 算法 数据库 构造盆地 古生物学
作者
Haifa AlSalmi,Ahmed H. Elsheikh
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA247-WA263 被引量:4
标识
DOI:10.1190/geo2023-0149.1
摘要

Seismic facies mapping from a 3D seismic cube is of significant value to various seismic interpretation and characterization tasks. Traditional facies mapping is based on examining sedimentary environments and stratigraphic sequences that provide distinct characteristics used for facies mapping. Given the complex nature of the task, manual facies mapping is typically time and labor consuming, and the quality of the decisions varies as a function of expertise. This complexity is further increased with the ever-increasing size of 3D seismic data sets. Deep-learning methods have indicated a promising potential to perform fast, accurate, and automated segmentation tasks. We investigate the application of machine-learning techniques, particularly state-of-the-art deep convolutional neural networks (CNNs), as a framework to perform accurate automated seismic facies pixel-wise segmentation. The workflow consists of a CNN-based U-Net architecture that adopts modern computer vision techniques. We develop three major changes to the standard U-Net to boost the performance for seismic semantic segmentation tasks: (1) using residual building blocks in the encoder, (2) using transformer-like attention gates after each residual block, and (3) using frequency spectrum data, in addition to seismic amplitude, as input to the network. We indicate that this implementation achieves higher accuracy metrics outperforming recently published state-of-the-art benchmarks. The performance of our method is validated using two 3D seismic data sets, the F3 Netherlands data set and the Penobscot data set acquired offshore Nova Scotia, Canada. Experimentation involves training on a set of samples and tuning the hyperparameters, followed by quantitative evaluation of the trained network. Our workflow produces high-quality segmentation with significantly reduced artifacts, improved edge detection, and improved lateral consistency throughout the seismic survey.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
joysa完成签到,获得积分10
2秒前
顺心的外套完成签到,获得积分10
3秒前
5秒前
7秒前
111完成签到 ,获得积分10
7秒前
龚广山完成签到,获得积分10
8秒前
逆光完成签到 ,获得积分10
11秒前
shuiyi发布了新的文献求助10
12秒前
怕黑钢笔完成签到 ,获得积分10
17秒前
郭志成完成签到 ,获得积分10
23秒前
库茨库茨完成签到,获得积分10
25秒前
vetzlk完成签到 ,获得积分10
27秒前
李昕123完成签到 ,获得积分10
28秒前
唠叨的逍遥完成签到,获得积分10
29秒前
35秒前
666发布了新的文献求助10
40秒前
大模型应助yuanyuan采纳,获得10
42秒前
bkagyin应助666采纳,获得10
46秒前
ding应助hhh采纳,获得10
54秒前
56秒前
58秒前
Hello应助健忘的板凳采纳,获得10
1分钟前
xuanxuan发布了新的文献求助10
1分钟前
1分钟前
pyh01完成签到 ,获得积分10
1分钟前
万能图书馆应助xuanxuan采纳,获得10
1分钟前
健忘的板凳完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
我必做出来完成签到,获得积分10
1分钟前
科研通AI6应助烂漫向卉采纳,获得30
1分钟前
小蘑菇应助alex采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898