Automated seismic semantic segmentation using attention U-Net

计算机科学 分割 卷积神经网络 深度学习 残余物 工作流程 人工智能 超参数 数据集 地质学 算法 数据库 构造盆地 古生物学
作者
Haifa AlSalmi,Ahmed H. Elsheikh
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA247-WA263 被引量:4
标识
DOI:10.1190/geo2023-0149.1
摘要

Seismic facies mapping from a 3D seismic cube is of significant value to various seismic interpretation and characterization tasks. Traditional facies mapping is based on examining sedimentary environments and stratigraphic sequences that provide distinct characteristics used for facies mapping. Given the complex nature of the task, manual facies mapping is typically time and labor consuming, and the quality of the decisions varies as a function of expertise. This complexity is further increased with the ever-increasing size of 3D seismic data sets. Deep-learning methods have indicated a promising potential to perform fast, accurate, and automated segmentation tasks. We investigate the application of machine-learning techniques, particularly state-of-the-art deep convolutional neural networks (CNNs), as a framework to perform accurate automated seismic facies pixel-wise segmentation. The workflow consists of a CNN-based U-Net architecture that adopts modern computer vision techniques. We develop three major changes to the standard U-Net to boost the performance for seismic semantic segmentation tasks: (1) using residual building blocks in the encoder, (2) using transformer-like attention gates after each residual block, and (3) using frequency spectrum data, in addition to seismic amplitude, as input to the network. We indicate that this implementation achieves higher accuracy metrics outperforming recently published state-of-the-art benchmarks. The performance of our method is validated using two 3D seismic data sets, the F3 Netherlands data set and the Penobscot data set acquired offshore Nova Scotia, Canada. Experimentation involves training on a set of samples and tuning the hyperparameters, followed by quantitative evaluation of the trained network. Our workflow produces high-quality segmentation with significantly reduced artifacts, improved edge detection, and improved lateral consistency throughout the seismic survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
呆萌发布了新的文献求助10
1秒前
2秒前
优雅猕猴桃关注了科研通微信公众号
3秒前
gy发布了新的文献求助10
3秒前
3秒前
二三完成签到 ,获得积分10
4秒前
喜悦的丹亦完成签到,获得积分10
4秒前
5秒前
福明明发布了新的文献求助10
5秒前
莫西发布了新的文献求助10
7秒前
12完成签到,获得积分10
7秒前
annie完成签到,获得积分10
7秒前
7秒前
8秒前
liuxuwei发布了新的文献求助10
9秒前
汉堡包应助呆萌采纳,获得10
9秒前
徐小赞完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助yinhaowu采纳,获得10
11秒前
Lowe发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
JamesPei应助wyy采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
共享精神应助12366666采纳,获得10
14秒前
dingjianqiang发布了新的文献求助10
15秒前
15秒前
可可发布了新的文献求助10
16秒前
chanyi完成签到,获得积分10
16秒前
风中的凝安完成签到,获得积分10
17秒前
李爱国应助smallsix采纳,获得10
18秒前
13333发布了新的文献求助10
18秒前
ll完成签到,获得积分10
19秒前
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352