亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated seismic semantic segmentation using attention U-Net

计算机科学 分割 卷积神经网络 深度学习 残余物 工作流程 人工智能 超参数 数据集 地质学 算法 数据库 古生物学 构造盆地
作者
Haifa AlSalmi,Ahmed H. Elsheikh
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA247-WA263 被引量:4
标识
DOI:10.1190/geo2023-0149.1
摘要

Seismic facies mapping from a 3D seismic cube is of significant value to various seismic interpretation and characterization tasks. Traditional facies mapping is based on examining sedimentary environments and stratigraphic sequences that provide distinct characteristics used for facies mapping. Given the complex nature of the task, manual facies mapping is typically time and labor consuming, and the quality of the decisions varies as a function of expertise. This complexity is further increased with the ever-increasing size of 3D seismic data sets. Deep-learning methods have indicated a promising potential to perform fast, accurate, and automated segmentation tasks. We investigate the application of machine-learning techniques, particularly state-of-the-art deep convolutional neural networks (CNNs), as a framework to perform accurate automated seismic facies pixel-wise segmentation. The workflow consists of a CNN-based U-Net architecture that adopts modern computer vision techniques. We develop three major changes to the standard U-Net to boost the performance for seismic semantic segmentation tasks: (1) using residual building blocks in the encoder, (2) using transformer-like attention gates after each residual block, and (3) using frequency spectrum data, in addition to seismic amplitude, as input to the network. We indicate that this implementation achieves higher accuracy metrics outperforming recently published state-of-the-art benchmarks. The performance of our method is validated using two 3D seismic data sets, the F3 Netherlands data set and the Penobscot data set acquired offshore Nova Scotia, Canada. Experimentation involves training on a set of samples and tuning the hyperparameters, followed by quantitative evaluation of the trained network. Our workflow produces high-quality segmentation with significantly reduced artifacts, improved edge detection, and improved lateral consistency throughout the seismic survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Benhnhk21完成签到,获得积分10
9秒前
去去去去发布了新的文献求助10
12秒前
14秒前
Zephyr发布了新的文献求助30
19秒前
情怀应助科研通管家采纳,获得10
21秒前
gszy1975完成签到,获得积分10
49秒前
月军完成签到,获得积分10
57秒前
大方的火龙果完成签到 ,获得积分10
1分钟前
2分钟前
小巫发布了新的文献求助10
2分钟前
2分钟前
Meimei完成签到,获得积分10
3分钟前
顾北完成签到 ,获得积分10
3分钟前
科研通AI2S应助athena采纳,获得30
4分钟前
4分钟前
lik发布了新的文献求助10
4分钟前
脑洞疼应助lik采纳,获得10
4分钟前
6分钟前
貔貅完成签到 ,获得积分10
6分钟前
6分钟前
段誉完成签到 ,获得积分10
7分钟前
chiazy完成签到 ,获得积分10
7分钟前
英姑应助zhangxr采纳,获得10
7分钟前
7分钟前
joe完成签到 ,获得积分0
8分钟前
华仔应助fleeper采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
自然馈赠发布了新的文献求助10
8分钟前
9分钟前
zhangxr发布了新的文献求助10
9分钟前
10分钟前
去去去去发布了新的文献求助10
11分钟前
11分钟前
小巫发布了新的文献求助10
12分钟前
去去去去发布了新的文献求助10
12分钟前
所所应助zsj采纳,获得10
12分钟前
12分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176