Rebuilding high-quality near-surface ozone data based on the combination of WRF-Chem model with a machine learning method to better estimate its impact on crop yields in the Beijing-Tianjin-Hebei region from 2014 to 2019

臭氧 环境科学 北京 污染 天气研究与预报模式 产量(工程) 作物产量 空气污染 空气质量指数 气象学 大气科学 化学 中国 农学 地理 生态学 材料科学 考古 有机化学 地质学 冶金 生物
作者
Tian Han,Xiaomin Hu,Jing Zhang,Wenhao Xue,Yunfei Che,Xiaoqing Deng,Lihua Zhou
出处
期刊:Environmental Pollution [Elsevier]
卷期号:336: 122334-122334 被引量:6
标识
DOI:10.1016/j.envpol.2023.122334
摘要

In recent years, the problem of surface ozone pollution in China has been of great concern. According to observation data from monitoring stations, the concentration of near-surface ozone (O3) in China has gradually increased in recent years, and ozone concentration often exceeds the contaminant limit standard, especially in the Beijing-Tianjin-Hebei (BTH) region. High O3 concentration pollution will adversely affect crop growth, which can cause crop yield losses. Therefore, it is urgent to recognize the situation of ozone pollution in the BTH region and quantitatively evaluate the crop yield losses caused by ozone pollution to develop more effective pollution prevention and control policies. However, the monitoring of ozone concentration in China started relatively late compared with some developed countries, and currently, long-time series data covering the BTH region cannot be obtained, which makes it difficult to evaluate the impact of ozone on crop yield. Therefore, a new method (WRFC-XGB) was proposed in this study to establish a high-precision near-surface O3 concentration dataset covering the whole BTH region from 2014 to 2019 by integrating the Weather Research and Forecasting with Chemistry (WRF-Chem) model with the extreme gradient boosting (XGBoost) machine learning algorithm. Through verification with ground observation station data, the results of WRFC-XGB are satisfactory, and R2 can reach 0.78–0.91. Compared with other algorithms, the accuracy of the near-surface ozone concentration dataset is greatly improved, which can be used to estimate the impact of surface ozone on crop yield. Based on this dataset, the yield loss of winter wheat, rice, and maize caused by O3 pollution was estimated by using the response equation of the relative yield and ozone dose index. The results showed that the total yield losses of winter wheat, rice and maize from 2014 to 2019 were 2659.21 million tons, 49.23 million tons and 1721.56 million tons due to ozone pollution in the BTH region, respectively, and the highest relative yield loss of crops caused by O3 pollution could be 29.37% during 2014–2019, which indicated that the impact of ozone pollution on crop yield cannot be ignored, and effective measures need to be developed to control ozone pollution, prevent crop production loss, and ensure people's food security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sisi发布了新的文献求助10
1秒前
洋子发布了新的文献求助10
1秒前
1秒前
Liu发布了新的文献求助10
2秒前
3秒前
homeworkk完成签到,获得积分10
3秒前
糊秃秃完成签到,获得积分10
4秒前
Cc完成签到,获得积分10
5秒前
潇湘学术完成签到,获得积分10
5秒前
LYDC完成签到 ,获得积分10
5秒前
6秒前
Lee发布了新的文献求助10
6秒前
默默的棒棒糖完成签到 ,获得积分10
7秒前
盛开的芒果完成签到,获得积分10
7秒前
Zhao Jiaxu完成签到,获得积分10
7秒前
jcduoduo完成签到,获得积分10
7秒前
韶忆秋应助double采纳,获得50
8秒前
白菜发布了新的文献求助10
8秒前
二水发布了新的文献求助10
8秒前
Ralphter完成签到,获得积分10
8秒前
8秒前
酷波er应助矮小的茹妖采纳,获得200
9秒前
zz完成签到,获得积分10
9秒前
train发布了新的文献求助30
9秒前
Kriemhild完成签到,获得积分10
10秒前
熊熊熊完成签到,获得积分10
10秒前
学术交流111完成签到,获得积分10
10秒前
秋秋牌蛋黄酱完成签到,获得积分10
11秒前
11秒前
陈老师耶关注了科研通微信公众号
11秒前
波比冰苏打完成签到,获得积分10
11秒前
12秒前
yao完成签到,获得积分10
12秒前
hz完成签到,获得积分20
12秒前
离线完成签到,获得积分10
12秒前
13秒前
13秒前
psydaodao发布了新的文献求助30
14秒前
琴楼完成签到,获得积分10
15秒前
16秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180194
求助须知:如何正确求助?哪些是违规求助? 2830601
关于积分的说明 7978929
捐赠科研通 2492151
什么是DOI,文献DOI怎么找? 1329250
科研通“疑难数据库(出版商)”最低求助积分说明 635708
版权声明 602954