Rebuilding high-quality near-surface ozone data based on the combination of WRF-Chem model with a machine learning method to better estimate its impact on crop yields in the Beijing-Tianjin-Hebei region from 2014 to 2019

臭氧 环境科学 北京 污染 天气研究与预报模式 产量(工程) 作物产量 空气污染 空气质量指数 气象学 大气科学 化学 中国 农学 地理 生态学 材料科学 考古 有机化学 地质学 冶金 生物
作者
Tian Han,Xiaomin Hu,Jing Zhang,Wenhao Xue,Yunfei Che,Xiaoqing Deng,Lihua Zhou
出处
期刊:Environmental Pollution [Elsevier]
卷期号:336: 122334-122334 被引量:9
标识
DOI:10.1016/j.envpol.2023.122334
摘要

In recent years, the problem of surface ozone pollution in China has been of great concern. According to observation data from monitoring stations, the concentration of near-surface ozone (O3) in China has gradually increased in recent years, and ozone concentration often exceeds the contaminant limit standard, especially in the Beijing-Tianjin-Hebei (BTH) region. High O3 concentration pollution will adversely affect crop growth, which can cause crop yield losses. Therefore, it is urgent to recognize the situation of ozone pollution in the BTH region and quantitatively evaluate the crop yield losses caused by ozone pollution to develop more effective pollution prevention and control policies. However, the monitoring of ozone concentration in China started relatively late compared with some developed countries, and currently, long-time series data covering the BTH region cannot be obtained, which makes it difficult to evaluate the impact of ozone on crop yield. Therefore, a new method (WRFC-XGB) was proposed in this study to establish a high-precision near-surface O3 concentration dataset covering the whole BTH region from 2014 to 2019 by integrating the Weather Research and Forecasting with Chemistry (WRF-Chem) model with the extreme gradient boosting (XGBoost) machine learning algorithm. Through verification with ground observation station data, the results of WRFC-XGB are satisfactory, and R2 can reach 0.78–0.91. Compared with other algorithms, the accuracy of the near-surface ozone concentration dataset is greatly improved, which can be used to estimate the impact of surface ozone on crop yield. Based on this dataset, the yield loss of winter wheat, rice, and maize caused by O3 pollution was estimated by using the response equation of the relative yield and ozone dose index. The results showed that the total yield losses of winter wheat, rice and maize from 2014 to 2019 were 2659.21 million tons, 49.23 million tons and 1721.56 million tons due to ozone pollution in the BTH region, respectively, and the highest relative yield loss of crops caused by O3 pollution could be 29.37% during 2014–2019, which indicated that the impact of ozone pollution on crop yield cannot be ignored, and effective measures need to be developed to control ozone pollution, prevent crop production loss, and ensure people's food security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanan发布了新的文献求助10
1秒前
乐生发布了新的文献求助10
2秒前
悠悠发布了新的文献求助10
2秒前
3秒前
lapin完成签到,获得积分10
3秒前
醉熏的宛筠完成签到,获得积分10
4秒前
安静发布了新的文献求助10
6秒前
科研通AI6应助wyt采纳,获得10
7秒前
chili完成签到,获得积分10
7秒前
8秒前
9秒前
乐生完成签到,获得积分10
12秒前
飞行器完成签到,获得积分10
13秒前
上善若水发布了新的文献求助10
13秒前
Carolna完成签到,获得积分10
14秒前
酷酷的匪发布了新的文献求助10
15秒前
16秒前
科目三应助阿莫仙采纳,获得10
17秒前
科研通AI6应助乾渊采纳,获得10
17秒前
冷酷愚志完成签到,获得积分10
17秒前
小蘑菇应助坦率德地采纳,获得20
18秒前
18秒前
19秒前
19秒前
李健应助不安的冷荷采纳,获得10
20秒前
田様应助吕佳蔚采纳,获得10
21秒前
22秒前
wxf发布了新的文献求助10
23秒前
25秒前
碎碎念发布了新的文献求助10
25秒前
25秒前
ding应助酷酷的匪采纳,获得10
27秒前
27秒前
28秒前
CC完成签到 ,获得积分10
29秒前
阿莫仙发布了新的文献求助10
29秒前
29秒前
充电宝应助刚睡醒采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841