Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization

强化学习 计算机科学 差异进化 水准点(测量) 进化算法 人工智能 趋同(经济学) 神经进化 进化计算 人工神经网络 机器学习 人口 灵活性(工程) 概括性 数学优化 数学 心理学 统计 人口学 大地测量学 社会学 地理 经济 心理治疗师 经济增长
作者
Zhenzhen Hu,Wenyin Gong,Witold Pedrycz,Yanchi Li
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:83: 101387-101387 被引量:25
标识
DOI:10.1016/j.swevo.2023.101387
摘要

Solving constrained optimization problems (COPs) with evolutionary algorithms (EAs) is a popular research direction due to its potential and diverse applications. One of the key issues in solving COPs is the choice of constraint handling techniques (CHTs), as different CHTs can lead to different evolutionary directions. Combining EAs with deep reinforcement learning (DRL) is a promising and emerging approach for solving COPs. Although DRL can help solve the problem of pre-setting operators in EAs, neural networks need to obtain diverse training data within a limited number of evaluations in EAs. Based on the above considerations, this work proposes a DRL assisted co-evolutionary differential evolution, named CEDE-DRL, which can effectively use DRL to help EAs solve COPs. (1) This method incorporates co-evolution into the extraction of training data for the first time, ensuring the diversity of samples and improving the accuracy of the neural network model through information exchange between multiple populations. (2) Multiple CHTs are used for offspring selection to ensure the algorithm's generality and flexibility. (3) DRL is used to evaluate the population state, taking into account feasibility, convergence, and diversity in the state setting and using the overall degree of improvement as a reward. The neural network selects suitable parent populations and corresponding archives for mutation. Finally, (4) to avoid premature convergence and local optima, an adaptive operator selection and individual archive elimination mechanism is added. Comparisons with state-of-the-art algorithms on benchmark functions CEC2010 and CEC2017 show that the proposed method performs competitively and produced robust solutions. The results of the application test set CEC2020 show that the proposed algorithm is also effective in real-world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
abjz完成签到,获得积分10
刚刚
三千弱水为君饮完成签到,获得积分10
1秒前
1秒前
cata完成签到,获得积分10
1秒前
感谢79转发科研通微信,获得积分50
1秒前
1秒前
troubadourelf发布了新的文献求助10
2秒前
frank发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
感谢超帅冬易转发科研通微信,获得积分50
5秒前
5秒前
6秒前
6秒前
lixia完成签到 ,获得积分10
6秒前
6秒前
7秒前
在水一方应助jy采纳,获得10
7秒前
7秒前
Lucas完成签到,获得积分10
8秒前
8秒前
NorthWang发布了新的文献求助10
8秒前
薄哼哼完成签到,获得积分10
8秒前
troubadourelf完成签到,获得积分10
8秒前
科研小白菜完成签到,获得积分20
9秒前
淡定的思松应助12采纳,获得10
9秒前
lan发布了新的文献求助10
9秒前
韩金龙发布了新的文献求助10
10秒前
10秒前
小飞七应助红毛兔采纳,获得10
10秒前
小仙虎殿下完成签到 ,获得积分10
10秒前
Ethan完成签到,获得积分10
11秒前
11秒前
12秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
12秒前
子春完成签到 ,获得积分10
12秒前
平常的纸飞机完成签到,获得积分10
12秒前
soso完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794