Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization

强化学习 计算机科学 差异进化 水准点(测量) 进化算法 人工智能 趋同(经济学) 神经进化 进化计算 人工神经网络 机器学习 人口 灵活性(工程) 概括性 数学优化 数学 心理学 统计 人口学 大地测量学 社会学 地理 经济 心理治疗师 经济增长
作者
Zhenzhen Hu,Wenyin Gong,Witold Pedrycz,Yanchi Li
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:83: 101387-101387 被引量:25
标识
DOI:10.1016/j.swevo.2023.101387
摘要

Solving constrained optimization problems (COPs) with evolutionary algorithms (EAs) is a popular research direction due to its potential and diverse applications. One of the key issues in solving COPs is the choice of constraint handling techniques (CHTs), as different CHTs can lead to different evolutionary directions. Combining EAs with deep reinforcement learning (DRL) is a promising and emerging approach for solving COPs. Although DRL can help solve the problem of pre-setting operators in EAs, neural networks need to obtain diverse training data within a limited number of evaluations in EAs. Based on the above considerations, this work proposes a DRL assisted co-evolutionary differential evolution, named CEDE-DRL, which can effectively use DRL to help EAs solve COPs. (1) This method incorporates co-evolution into the extraction of training data for the first time, ensuring the diversity of samples and improving the accuracy of the neural network model through information exchange between multiple populations. (2) Multiple CHTs are used for offspring selection to ensure the algorithm's generality and flexibility. (3) DRL is used to evaluate the population state, taking into account feasibility, convergence, and diversity in the state setting and using the overall degree of improvement as a reward. The neural network selects suitable parent populations and corresponding archives for mutation. Finally, (4) to avoid premature convergence and local optima, an adaptive operator selection and individual archive elimination mechanism is added. Comparisons with state-of-the-art algorithms on benchmark functions CEC2010 and CEC2017 show that the proposed method performs competitively and produced robust solutions. The results of the application test set CEC2020 show that the proposed algorithm is also effective in real-world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小潘完成签到 ,获得积分10
1秒前
天天天才完成签到,获得积分10
2秒前
完美世界应助able采纳,获得10
3秒前
辛苦科研人完成签到 ,获得积分10
4秒前
慕青应助xiaowan采纳,获得10
6秒前
魏凡之完成签到 ,获得积分10
7秒前
10秒前
11秒前
fuguier发布了新的文献求助10
12秒前
14秒前
zsk1122完成签到,获得积分10
16秒前
荔枝发布了新的文献求助10
16秒前
lyy完成签到 ,获得积分10
17秒前
20秒前
myuniv完成签到,获得积分10
20秒前
专注鸵鸟完成签到,获得积分10
20秒前
专注之双完成签到,获得积分10
21秒前
Zircon完成签到 ,获得积分10
22秒前
Much完成签到 ,获得积分10
23秒前
23秒前
充电宝应助颠覆乾坤采纳,获得10
24秒前
25秒前
无花果应助pz采纳,获得10
25秒前
zheng完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
星辰大海应助荔枝采纳,获得10
28秒前
LJL发布了新的文献求助10
29秒前
meng发布了新的文献求助10
29秒前
无私的颤完成签到,获得积分10
29秒前
lucky完成签到 ,获得积分10
30秒前
Zel博博完成签到,获得积分10
30秒前
谷粱诗云完成签到,获得积分10
30秒前
yar应助myuniv采纳,获得10
30秒前
xc完成签到 ,获得积分10
31秒前
31秒前
干净的天与完成签到,获得积分10
31秒前
哈基米德应助毅诚菌采纳,获得10
33秒前
铁甲小杨完成签到,获得积分0
33秒前
34秒前
卡机了完成签到,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022