亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization

强化学习 计算机科学 差异进化 水准点(测量) 进化算法 人工智能 趋同(经济学) 神经进化 进化计算 人工神经网络 机器学习 人口 灵活性(工程) 概括性 数学优化 数学 人口学 社会学 经济 大地测量学 地理 心理治疗师 统计 经济增长 心理学
作者
Zhenzhen Hu,Wenyin Gong,Witold Pedrycz,Yanchi Li
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:83: 101387-101387 被引量:25
标识
DOI:10.1016/j.swevo.2023.101387
摘要

Solving constrained optimization problems (COPs) with evolutionary algorithms (EAs) is a popular research direction due to its potential and diverse applications. One of the key issues in solving COPs is the choice of constraint handling techniques (CHTs), as different CHTs can lead to different evolutionary directions. Combining EAs with deep reinforcement learning (DRL) is a promising and emerging approach for solving COPs. Although DRL can help solve the problem of pre-setting operators in EAs, neural networks need to obtain diverse training data within a limited number of evaluations in EAs. Based on the above considerations, this work proposes a DRL assisted co-evolutionary differential evolution, named CEDE-DRL, which can effectively use DRL to help EAs solve COPs. (1) This method incorporates co-evolution into the extraction of training data for the first time, ensuring the diversity of samples and improving the accuracy of the neural network model through information exchange between multiple populations. (2) Multiple CHTs are used for offspring selection to ensure the algorithm's generality and flexibility. (3) DRL is used to evaluate the population state, taking into account feasibility, convergence, and diversity in the state setting and using the overall degree of improvement as a reward. The neural network selects suitable parent populations and corresponding archives for mutation. Finally, (4) to avoid premature convergence and local optima, an adaptive operator selection and individual archive elimination mechanism is added. Comparisons with state-of-the-art algorithms on benchmark functions CEC2010 and CEC2017 show that the proposed method performs competitively and produced robust solutions. The results of the application test set CEC2020 show that the proposed algorithm is also effective in real-world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卤肉饭与石榴汁完成签到,获得积分10
刚刚
Merlin完成签到,获得积分10
3秒前
小丸子和zz完成签到 ,获得积分10
4秒前
4秒前
墨月白完成签到,获得积分10
4秒前
5秒前
共享精神应助欣欣采纳,获得30
8秒前
星雪发布了新的文献求助10
10秒前
木有完成签到 ,获得积分10
13秒前
13秒前
聆风完成签到 ,获得积分10
22秒前
24秒前
26秒前
研友_nEoEy8完成签到,获得积分10
26秒前
单薄绿竹发布了新的文献求助30
28秒前
31秒前
31秒前
CodeCraft应助不安跳跳糖采纳,获得10
32秒前
浮游应助ceeray23采纳,获得30
35秒前
星雪发布了新的文献求助10
38秒前
单薄绿竹完成签到,获得积分10
41秒前
Angela完成签到,获得积分10
42秒前
45秒前
47秒前
让我多睡会吧应助嘻嘻哈哈采纳,获得300
52秒前
1分钟前
1分钟前
LMH完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LMH发布了新的文献求助10
1分钟前
七少爷发布了新的文献求助10
1分钟前
完美世界应助默默善愁采纳,获得10
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助300
1分钟前
顾矜应助LMH采纳,获得10
1分钟前
luyang应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356555
求助须知:如何正确求助?哪些是违规求助? 4488318
关于积分的说明 13971967
捐赠科研通 4389223
什么是DOI,文献DOI怎么找? 2411429
邀请新用户注册赠送积分活动 1403968
关于科研通互助平台的介绍 1377893