Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization

强化学习 计算机科学 差异进化 水准点(测量) 进化算法 人工智能 趋同(经济学) 神经进化 进化计算 人工神经网络 机器学习 人口 灵活性(工程) 概括性 数学优化 数学 心理学 统计 人口学 大地测量学 社会学 地理 经济 心理治疗师 经济增长
作者
Zhenzhen Hu,Wenyin Gong,Witold Pedrycz,Yanchi Li
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:83: 101387-101387 被引量:25
标识
DOI:10.1016/j.swevo.2023.101387
摘要

Solving constrained optimization problems (COPs) with evolutionary algorithms (EAs) is a popular research direction due to its potential and diverse applications. One of the key issues in solving COPs is the choice of constraint handling techniques (CHTs), as different CHTs can lead to different evolutionary directions. Combining EAs with deep reinforcement learning (DRL) is a promising and emerging approach for solving COPs. Although DRL can help solve the problem of pre-setting operators in EAs, neural networks need to obtain diverse training data within a limited number of evaluations in EAs. Based on the above considerations, this work proposes a DRL assisted co-evolutionary differential evolution, named CEDE-DRL, which can effectively use DRL to help EAs solve COPs. (1) This method incorporates co-evolution into the extraction of training data for the first time, ensuring the diversity of samples and improving the accuracy of the neural network model through information exchange between multiple populations. (2) Multiple CHTs are used for offspring selection to ensure the algorithm's generality and flexibility. (3) DRL is used to evaluate the population state, taking into account feasibility, convergence, and diversity in the state setting and using the overall degree of improvement as a reward. The neural network selects suitable parent populations and corresponding archives for mutation. Finally, (4) to avoid premature convergence and local optima, an adaptive operator selection and individual archive elimination mechanism is added. Comparisons with state-of-the-art algorithms on benchmark functions CEC2010 and CEC2017 show that the proposed method performs competitively and produced robust solutions. The results of the application test set CEC2020 show that the proposed algorithm is also effective in real-world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助2021采纳,获得10
刚刚
刚刚
刚刚
刚刚
南鸢发布了新的文献求助10
刚刚
1秒前
1秒前
充满繁星的夜完成签到,获得积分10
1秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
sx应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
zbblp1应助科研通管家采纳,获得30
2秒前
博弈春秋应助科研通管家采纳,获得10
2秒前
扎心应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
博弈春秋应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
若E18应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
扎心应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助8hua采纳,获得10
4秒前
4秒前
4秒前
王双羊完成签到,获得积分10
4秒前
4秒前
hansel完成签到,获得积分10
4秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042