Hierarchical attention aggregation with multi-resolution feature learning for GAN-based underwater image enhancement

计算机科学 特征(语言学) 鉴别器 频道(广播) 编码器 人工智能 水下 发电机(电路理论) 块(置换群论) 瓶颈 计算机视觉 模式识别(心理学) 电信 嵌入式系统 功率(物理) 操作系统 物理 海洋学 地质学 哲学 探测器 量子力学 语言学 数学 几何学
作者
Dehuan Zhang,Chenyu Wu,Jingchun Zhou,Weishi Zhang,Chaolei Li,Zifan Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106743-106743 被引量:37
标识
DOI:10.1016/j.engappai.2023.106743
摘要

In recent years, underwater image enhancement and restoration technologies have become increasingly important in order to optimize the efficiency of maritime operations and promote the automatic machine learning of the maritime industry. A new hierarchical attention aggregation with multi-resolution feature learning for GAN-based underwater image enhancement is proposed to address the problems of color bias, underexposure, and blurring in underwater images. The proposed method consists of a generator and a discriminator. Specifically, the generator includes an encoder, a bottleneck layer, and a decoder. Generator introduces inter-block serial connections for better adaptation to complex image scenes and task requirements, and parallel connections to extract multi-level features and enhance the expressive capacity of the network. To extract semantic and contextual information, hierarchical attention dense aggregation is designed in the encoder, which includes multi-scale feature hierarchy and dense feature hierarchy. Additionally, a multi-scale spatial attention mechanism is designed in the bottleneck layer to handle variations in underwater image scenes. In the decoder, the feature channel layer is emphasized, and a multi-channel attention mechanism is proposed to restore the multi-resolution channel features to a three-channel enhanced image. Furthermore, the angular loss function is introduced as additional supervision, which improves the similarity between the generated and original images, increases image clarity, and reduces color bias. Meanwhile, we employ the patch discriminator to enhance machine vision. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
110o发布了新的文献求助10
1秒前
泊頔发布了新的文献求助10
3秒前
寒江雪发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Thien发布了新的文献求助10
4秒前
gary应助felix采纳,获得10
6秒前
pluto应助felix采纳,获得10
6秒前
6秒前
泪七龙完成签到,获得积分10
6秒前
可爱的函函应助CoCo采纳,获得10
7秒前
郭依婷发布了新的文献求助10
7秒前
7秒前
8秒前
munawar发布了新的文献求助10
11秒前
sian发布了新的文献求助10
11秒前
泪七龙发布了新的文献求助10
12秒前
科研通AI6应助ruby采纳,获得10
12秒前
12秒前
mo完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
憨憨发布了新的文献求助10
15秒前
科研通AI6应助寒江雪采纳,获得10
16秒前
zzmyyds完成签到,获得积分10
16秒前
Ava应助阿南采纳,获得10
17秒前
贾明阳完成签到,获得积分10
17秒前
17秒前
mo发布了新的文献求助10
17秒前
Chelsea发布了新的文献求助30
18秒前
22秒前
23秒前
24秒前
25秒前
weiv发布了新的文献求助10
27秒前
lankeren发布了新的文献求助10
28秒前
fenfen完成签到,获得积分10
29秒前
29秒前
LALball发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402