Complete Rotated Localization Loss Based on Super-Gaussian Distribution for Remote Sensing Images

椭圆 高斯分布 高斯过程 数学 间断(语言学) 高斯函数 算法 边界(拓扑) Kullback-Leibler散度 目标检测 计算机科学 人工智能 数学分析 几何学 模式识别(心理学) 物理 量子力学
作者
Zhonghua Li,Biao Hou,Zitong Wu,Zhengxi Guo,Bo Ren,Xianpeng Guo,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2023.3305578
摘要

Localization regression in oriented object detection tasks has long faced boundary discontinuity and angular discontinuity problems induced by periodic angles. These problems were successfully resolved by using a 2d Gaussian distribution to modelling the oriented bounding box (OBB). However, the angular information of square-like objects will be lost when they are converted to 2d Gaussian distribution, forming a systematic problem. Its fundamental reason is that when the aspect ratio of the object tends to 1, the equiprobability curve of 2d Gaussian distribution degenerates from an ellipse to a circle, thus losing the orientation information of the rotated object. This results in the bounding boxes of such square-like objects not being learned effectively. To resolve this problem, we used the Lamé curve (or superellipse) to modify the existing 2d Gaussian function and designed a super-Gaussian distribution. This distribution can maintain anisotropy at arbitrary aspect ratios, thus preserving the angular information of the oriented object. We used the Kullback-Leibler (KL) divergence to measure the distance between two super-Gaussian distributions and convert it into a localization loss (SGKLD) by a function. SGKLD is an improved version of KLD loss. By modifying the form of the probability distribution, we elegantly fix the angle missing problem of the traditional Gaussian distribution. We validated the effectiveness of the proposed algorithm on several datasets and obtained the performance of SOTA. Our algorithm achieves a mean average precision (mAP) of 80.07, 76.59, 62.27, and 90.55/98.13 on the DOTA-v1.0, DOTA-v1.5, DOTA-v2.0, and HRSC2016 datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助ling22采纳,获得30
刚刚
西哥发布了新的文献求助10
1秒前
2秒前
3秒前
无花果应助goblin采纳,获得10
3秒前
Timezzz发布了新的文献求助10
4秒前
4秒前
hsx完成签到,获得积分10
6秒前
7秒前
SYLH应助冰美式采纳,获得10
7秒前
在水一方应助卧室哒帅哥采纳,获得10
8秒前
可爱的函函应助jxl采纳,获得10
8秒前
mmol发布了新的文献求助10
8秒前
Hello应助zzy采纳,获得10
8秒前
8秒前
湖工大保卫处完成签到,获得积分10
8秒前
8秒前
简单山水发布了新的文献求助10
9秒前
9秒前
9秒前
CipherSage应助叙温雨采纳,获得10
10秒前
丘比特应助满意的涵菱采纳,获得10
11秒前
11秒前
田様应助轻语采纳,获得10
12秒前
Tao发布了新的文献求助10
12秒前
riverflowing发布了新的文献求助20
13秒前
ling22发布了新的文献求助30
14秒前
16秒前
烟花应助mmol采纳,获得10
17秒前
李天发布了新的文献求助10
17秒前
17秒前
riverflowing完成签到,获得积分20
18秒前
21秒前
jjj关注了科研通微信公众号
21秒前
Tao完成签到,获得积分10
21秒前
瑞葛发布了新的文献求助10
21秒前
23秒前
人人夸我美食家完成签到,获得积分10
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835