Rotating Machinery Fault Classification Based on One-Dimensional Residual Network with Attention Mechanism and Bidirectional Gated Recurrent Unit

残余物 机制(生物学) 计算机科学 断层(地质) 单位(环理论) 人工智能 模式识别(心理学) 心理学 物理 算法 地质学 数学教育 量子力学 地震学
作者
Zhilin Dong,Dezun Zhao,Lingli Cui
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-6501/ad41fb
摘要

Abstract Conventional convolutional neural networks (CNNs) predominantly emphasize spatial features of signals and often fall short in prioritizing sequential features. As the number of layers increases, they are prone to issues such as vanishing or exploding gradients, leading to training instability and subsequent erratic fluctuations in loss values and recognition rates. To address this issue, a novel hybrid model, termed one-dimensional residual network with attention mechanism and bidirectional gated recurrent unit (1D-RAM-BGRU) is developed for rotating machinery fault classification. First, a novel one-dimensional residual network (1D-ResNet) with optimized structure is constructed to obtain spatial features and mitigate the gradient vanishing or exploding. Second, the attention mechanism (AM)is designed to catch important impact characteristics for fault samples. Next, temporal features are mined through the bidirectional gated recurrent unit (BGRU .) Finally, feature information is summarized through global average pooling, and the fully connected layer is utilized to output the final classification result for rotating machinery fault diagnosis. The developed technique which is tested on one set of planetary gear data and three different sets of bearing data, has achieved classification accuracy of 98.5%, 100%, 100%, and 100%, respectively. Compared with other methods, including CNN, CNN-BGRU, CNN-AM, and CAM-BGRU, the proposed technique has the highest recognition rate and stable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xianyu完成签到,获得积分10
1秒前
麦乐兴完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
6秒前
开心发布了新的文献求助10
6秒前
9秒前
科研通AI2S应助和谐为上采纳,获得10
9秒前
祥梦伊飞发布了新的文献求助30
10秒前
羊老三发布了新的文献求助10
11秒前
Ann发布了新的文献求助10
12秒前
在我梦里绕完成签到,获得积分10
13秒前
13秒前
pb完成签到 ,获得积分10
13秒前
Gaojin锦完成签到,获得积分10
16秒前
18秒前
kaikai完成签到,获得积分10
18秒前
Ann完成签到,获得积分10
21秒前
kaikai发布了新的文献求助10
22秒前
22秒前
炸鸡加热发布了新的文献求助10
23秒前
橙汁椰子汁完成签到,获得积分10
24秒前
wch666完成签到,获得积分10
26秒前
Singularity应助knn采纳,获得10
29秒前
科研通AI2S应助谷歌采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
32秒前
混沌完成签到,获得积分10
32秒前
打打应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
Cassie应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助好好学习采纳,获得10
35秒前
snail01完成签到,获得积分10
35秒前
36秒前
39秒前
39秒前
40秒前
小小铱完成签到,获得积分10
40秒前
来来完成签到,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023