An artificial neural network based approach for predicting the proton beam spot dosimetric characteristics of a pencil beam scanning technique

束流扫描 闪烁体 均方误差 梁(结构) 近似误差 均方根 人工神经网络 光学 探测器 数学 材料科学 人工智能 物理 质子疗法 统计 计算机科学 量子力学
作者
C P Ranjith,Mayakannan Krishnan,Vysakh Raveendran,Lalit Chaudhari,Siddhartha Laskar
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035033-035033 被引量:1
标识
DOI:10.1088/2057-1976/ad3ce0
摘要

Abstract Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in the x -axis, y -axis, major axis, minor axis, and relative positional errors in the x -axis and y -axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的鸡翅完成签到 ,获得积分10
刚刚
za==应助guguhuhu采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
daheeeee发布了新的文献求助10
刚刚
1秒前
玉子莹发布了新的文献求助30
1秒前
2秒前
积极晓绿完成签到,获得积分10
2秒前
ssss完成签到,获得积分10
2秒前
清秀颜演完成签到,获得积分10
2秒前
pbj发布了新的文献求助10
2秒前
英俊的铭应助Keira采纳,获得10
2秒前
dow完成签到,获得积分10
2秒前
打打应助QQ采纳,获得10
2秒前
xiaoliu完成签到,获得积分10
3秒前
zhuyimin913发布了新的文献求助10
3秒前
贝塔发布了新的文献求助10
3秒前
fragile完成签到,获得积分10
3秒前
wangsiyuan完成签到 ,获得积分10
4秒前
研友_莫笑旋完成签到,获得积分10
4秒前
ming123ah完成签到,获得积分10
4秒前
Rondab应助玉七采纳,获得10
5秒前
5秒前
5秒前
奋斗冬萱完成签到,获得积分10
6秒前
zrs完成签到,获得积分10
6秒前
7秒前
无花果应助pbj采纳,获得10
7秒前
long4jun3完成签到,获得积分10
7秒前
爆米花应助苹果秋灵采纳,获得10
7秒前
daisies应助迷茫的水母采纳,获得20
8秒前
8秒前
求大佬帮助完成签到,获得积分10
8秒前
9秒前
rksm完成签到 ,获得积分10
9秒前
star009完成签到,获得积分10
9秒前
lee完成签到 ,获得积分10
10秒前
10秒前
沐沐完成签到,获得积分10
10秒前
Gstar完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259