An artificial neural network based approach for predicting the proton beam spot dosimetric characteristics of a pencil beam scanning technique

束流扫描 闪烁体 均方误差 梁(结构) 近似误差 均方根 人工神经网络 光学 探测器 数学 材料科学 人工智能 物理 质子疗法 统计 计算机科学 量子力学
作者
C P Ranjith,Mayakannan Krishnan,Vysakh Raveendran,Lalit Chaudhari,Siddhartha Laskar
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035033-035033 被引量:1
标识
DOI:10.1088/2057-1976/ad3ce0
摘要

Abstract Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in the x -axis, y -axis, major axis, minor axis, and relative positional errors in the x -axis and y -axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豌豆射手发布了新的文献求助10
刚刚
科研通AI2S应助k7采纳,获得10
刚刚
wszldmn完成签到,获得积分10
刚刚
坚定的亦绿完成签到,获得积分10
1秒前
1秒前
yurh完成签到,获得积分10
1秒前
小朋友完成签到,获得积分10
2秒前
华仔应助小王采纳,获得10
2秒前
彭于晏应助乔乔采纳,获得10
2秒前
2秒前
1199完成签到,获得积分10
2秒前
2秒前
南瓜完成签到 ,获得积分10
3秒前
eric曾完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
韦威风完成签到,获得积分10
6秒前
请叫我风吹麦浪应助cc采纳,获得30
6秒前
所所应助Ll采纳,获得10
6秒前
阳光的道消完成签到,获得积分10
7秒前
7秒前
7秒前
豌豆射手完成签到,获得积分10
8秒前
8秒前
桑桑发布了新的文献求助10
8秒前
领导范儿应助幸福胡萝卜采纳,获得10
9秒前
明理的小甜瓜完成签到,获得积分10
10秒前
10秒前
33333完成签到,获得积分20
10秒前
10秒前
10秒前
756发布了新的文献求助10
10秒前
11秒前
科研通AI5应助GHOST采纳,获得10
11秒前
11秒前
罗实完成签到,获得积分10
12秒前
科研通AI2S应助k7采纳,获得10
12秒前
12秒前
粱自中完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762