已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An artificial neural network based approach for predicting the proton beam spot dosimetric characteristics of a pencil beam scanning technique

束流扫描 闪烁体 均方误差 梁(结构) 近似误差 均方根 人工神经网络 光学 探测器 数学 材料科学 人工智能 物理 质子疗法 统计 计算机科学 量子力学
作者
C P Ranjith,Mayakannan Krishnan,Vysakh Raveendran,Lalit Chaudhari,Siddhartha Laskar
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035033-035033 被引量:1
标识
DOI:10.1088/2057-1976/ad3ce0
摘要

Abstract Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in the x -axis, y -axis, major axis, minor axis, and relative positional errors in the x -axis and y -axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
shamy夫妇完成签到,获得积分10
4秒前
6秒前
Bailey发布了新的文献求助30
8秒前
8秒前
自信号厂完成签到 ,获得积分10
9秒前
小熊发布了新的文献求助10
11秒前
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
Hanny完成签到 ,获得积分10
16秒前
江三村完成签到 ,获得积分10
16秒前
希望天下0贩的0应助BX-95采纳,获得10
18秒前
20秒前
七草肃完成签到,获得积分10
22秒前
汉堡包应助Ade采纳,获得10
22秒前
28秒前
板凳完成签到 ,获得积分10
31秒前
32秒前
快乐滑板发布了新的文献求助10
32秒前
32秒前
37秒前
Summer_Xia完成签到 ,获得积分10
38秒前
LYZSh完成签到,获得积分10
41秒前
wzy完成签到,获得积分10
43秒前
44秒前
英姑应助灰灰采纳,获得10
48秒前
52秒前
俭朴的元绿完成签到,获得积分10
53秒前
时尚白凡完成签到 ,获得积分10
54秒前
tanhaowen发布了新的文献求助10
56秒前
yaoyao发布了新的文献求助10
56秒前
小猪琪琪完成签到,获得积分10
1分钟前
1分钟前
cx发布了新的文献求助10
1分钟前
无聊的月饼完成签到 ,获得积分10
1分钟前
危机的囧完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133855
求助须知:如何正确求助?哪些是违规求助? 2784787
关于积分的说明 7768474
捐赠科研通 2440139
什么是DOI,文献DOI怎么找? 1297185
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791