转录组
蛋白质组
计算生物学
生物
基因组
遗传学
进化生物学
基因
基因表达
作者
Jeffrey Okamoto,Xianyong Yin,Brady Ryan,Joshua Chiou,Francesca Luca,Roger Piqué-Regi,Hae Kyung Im,Jean Morrison,Charles Burant,Eric B. Fauman,Markku Laakso,Michael Boehnke,Xiaoquan Wen
标识
DOI:10.1101/2024.03.28.587202
摘要
Abstract We present multi-integration of transcriptome-wide association studies and colocalization (Multi-INTACT), an algorithm that models multiple gene products (e.g. encoded RNA transcript and protein levels) to implicate causal genes and relevant gene products. In simulations, Multi-INTACT achieves higher power than existing methods, maintains calibrated false discovery rates, and detects the true causal gene product(s). We apply Multi-INTACT to GWAS on 1,408 metabolites, integrating the GTEx expression and UK Biobank protein QTL datasets. Multi-INTACT infers 52% to 109% more metabolite causal genes than protein-alone or expression-alone analyses and indicates both gene products are relevant for most gene nominations.
科研通智能强力驱动
Strongly Powered by AbleSci AI