Asymmetric Integral Barrier Lyapunov Function-Based Human–Robot Interaction Control for Human-Compliant Space-Constrained Muscle Strength Training

李雅普诺夫函数 控制理论(社会学) 机器人 控制(管理) 空格(标点符号) 计算机科学 培训(气象学) 人工智能 非线性系统 物理 量子力学 气象学 操作系统
作者
Jianfeng Li,Xin Wang,Ran Jiao,Mingjie Dong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 4305-4317 被引量:4
标识
DOI:10.1109/tsmc.2024.3378479
摘要

In this article, an asymmetric integral barrier Lyapunov function (AIBLF)-based control scheme is proposed for human–robot interaction (HRI), with which robot-aided human-compliant space-constrained muscle strength training can be achieved. First, an admittance model is exploited to generate compliant desired trajectory with the input of human–robot interaction torque. Then, on the basis of the super-twisting algorithm, a nonlinear observer is built to estimate and further compensate for the lumped disturbance applied to the robotic driving joint, including the active torque from human subject, the robotic model uncertainty, the friction, etc. Finally, an AIBLF-based controller involving nonlinear observer is proposed to solve the trajectory tracking issues in addition to the general constraint of training task space, in which the AIBLF strategy is utilized to establish an asymmetric-constrained training task space with adjustable boundary effects. This approach ensures that the training environment is tailored to accommodate individual needs and preferences, promoting a safer and more comfortable training experience. The convergence of all states and stability analysis for the closed-loop system are presented via the Lyapunov stability theory. The effectiveness of the proposed control scheme is verified by a single-joint muscle strength training robot in various experiments, and it is worth noting that this method can be easily extended to other multijoint robotic systems with the demand of human compliance and space constraint.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦小如发布了新的文献求助10
刚刚
刚刚
61D完成签到,获得积分10
刚刚
1秒前
光亮的千亦完成签到,获得积分10
1秒前
1秒前
董zh完成签到,获得积分10
2秒前
科研废物发布了新的文献求助10
2秒前
迢迢星河万里完成签到,获得积分10
3秒前
3秒前
科研通AI6应助kk_yang采纳,获得10
3秒前
等待盼山发布了新的文献求助20
4秒前
JETSTREAM完成签到,获得积分10
4秒前
Owen应助lq采纳,获得10
4秒前
彪壮的邑完成签到,获得积分10
4秒前
研友_VZG7GZ应助龙龍泷采纳,获得10
5秒前
Earnestlee发布了新的文献求助60
5秒前
ruirui_love发布了新的文献求助10
6秒前
科研通AI6应助aishiying采纳,获得30
6秒前
麦子发布了新的文献求助10
6秒前
6秒前
可爱的函函应助花汐采纳,获得10
7秒前
善学以致用应助好运莲莲采纳,获得10
7秒前
情怀应助小七2022采纳,获得10
7秒前
MUWENYING完成签到,获得积分10
7秒前
上官若男应助AJY采纳,获得10
7秒前
科研通AI6应助噜啦啦采纳,获得10
7秒前
上官若男应助小闰土采纳,获得10
7秒前
xie发布了新的文献求助10
8秒前
情怀应助烤肠采纳,获得10
9秒前
97发布了新的文献求助10
9秒前
虚心碧完成签到,获得积分20
9秒前
10秒前
舒适静丹发布了新的文献求助10
10秒前
王一完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
12秒前
黄礼韬发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716