Asymmetric Integral Barrier Lyapunov Function-Based Human–Robot Interaction Control for Human-Compliant Space-Constrained Muscle Strength Training

李雅普诺夫函数 控制理论(社会学) 机器人 控制(管理) 空格(标点符号) 计算机科学 培训(气象学) 人工智能 非线性系统 物理 量子力学 气象学 操作系统
作者
Jianfeng Li,Xin Wang,Ran Jiao,Mingjie Dong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 4305-4317 被引量:2
标识
DOI:10.1109/tsmc.2024.3378479
摘要

In this article, an asymmetric integral barrier Lyapunov function (AIBLF)-based control scheme is proposed for human–robot interaction (HRI), with which robot-aided human-compliant space-constrained muscle strength training can be achieved. First, an admittance model is exploited to generate compliant desired trajectory with the input of human–robot interaction torque. Then, on the basis of the super-twisting algorithm, a nonlinear observer is built to estimate and further compensate for the lumped disturbance applied to the robotic driving joint, including the active torque from human subject, the robotic model uncertainty, the friction, etc. Finally, an AIBLF-based controller involving nonlinear observer is proposed to solve the trajectory tracking issues in addition to the general constraint of training task space, in which the AIBLF strategy is utilized to establish an asymmetric-constrained training task space with adjustable boundary effects. This approach ensures that the training environment is tailored to accommodate individual needs and preferences, promoting a safer and more comfortable training experience. The convergence of all states and stability analysis for the closed-loop system are presented via the Lyapunov stability theory. The effectiveness of the proposed control scheme is verified by a single-joint muscle strength training robot in various experiments, and it is worth noting that this method can be easily extended to other multijoint robotic systems with the demand of human compliance and space constraint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
学术混子发布了新的文献求助10
2秒前
3秒前
沐晨完成签到,获得积分20
5秒前
7秒前
婳嬨发布了新的文献求助10
8秒前
qmx完成签到,获得积分20
12秒前
13秒前
lcl完成签到,获得积分10
13秒前
13秒前
明月给明月的求助进行了留言
14秒前
14秒前
18秒前
幽默大娘发布了新的文献求助10
19秒前
19秒前
MoriZhang发布了新的文献求助10
20秒前
21秒前
21秒前
忧郁月光发布了新的文献求助10
23秒前
一由天完成签到,获得积分10
23秒前
24秒前
mosheng完成签到,获得积分10
26秒前
27秒前
英俊的铭应助反方向的钟采纳,获得30
27秒前
eclogue07发布了新的文献求助10
29秒前
29秒前
盒子应助科研通管家采纳,获得10
29秒前
pluto应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
30秒前
pluto应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得30
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293208
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441437
捐赠科研通 2601499
什么是DOI,文献DOI怎么找? 1419946
科研通“疑难数据库(出版商)”最低求助积分说明 660452
邀请新用户注册赠送积分活动 643063