已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated Quantum-Based Privacy-Preserving Threat Detection Model for Consumer Internet of Things

计算机科学 计算机安全 互联网 互联网隐私 信息隐私 隐私软件 隐私保护 消费者隐私 万维网
作者
Danyal Namakshenas,Abbas Yazdinejad,Ali Dehghantanha,Gautam Srivastava
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:19
标识
DOI:10.1109/tce.2024.3377550
摘要

The Internet of Things (IoT) has significantly impacted the evolution of consumer-oriented smart environments, primarily due to its capacity for transformative device-to-device communication. While this capability enhances user convenience and experience in the Consumer IoT sector, it also generates vast amounts of data. While beneficial for consumer insight and electronic optimization, this data is vulnerable to security breaches. We focus on Machine Learning-based threat detection systems to address these challenges within the Consumer IoT. While effective in recognizing threats, these systems often overlook crucial privacy considerations, a critical aspect in the realm of consumer devices. To counter this, Federated Learning (FL) emerges as a promising solution for maintaining data privacy in Consumer IoT. However, FL faces its own challenges, especially when dealing with malicious clients. This paper addresses two primary challenges in Consumer IoT threat detection. First, we tackle an unaddressed issue in FL: the rigorous validation of its clients. The advent of quantum computing could render traditional validation techniques obsolete. We introduce a quantum-centric registration and authentication strategy to overcome this, ensuring stringent client validation in an FL framework. The second challenge involves protecting clients' model weights within FL. We propose the integration of Additive Homomorphic Encryption into our model, offering a robust solution that secures the privacy of FL participants without compromising on computational efficiency. Our empirical results underscore the efficacy of our approach, achieving an average accuracy of 94.93% on the N-baIoT dataset and 91.93% on the Edge-IIoTset dataset, showcasing consistent and robust performance across diverse client configurations. This approach can potentially significantly improve the security and privacy landscape of Consumer IoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalaland发布了新的文献求助10
4秒前
SPUwangshunfeng完成签到,获得积分10
7秒前
linn完成签到 ,获得积分10
7秒前
9秒前
10秒前
wjw123发布了新的文献求助10
14秒前
神奇海螺完成签到 ,获得积分10
15秒前
lalaland完成签到,获得积分20
16秒前
难过的醉香完成签到,获得积分10
17秒前
兴奋的若菱完成签到 ,获得积分10
18秒前
洋溢完成签到,获得积分10
22秒前
成就书雪完成签到,获得积分10
22秒前
23秒前
25秒前
26秒前
外向的音响完成签到,获得积分10
30秒前
自信寄灵发布了新的文献求助10
31秒前
33秒前
zoye完成签到 ,获得积分10
33秒前
诚心凝蝶完成签到,获得积分10
37秒前
40秒前
41秒前
zorro3574完成签到,获得积分10
42秒前
大模型应助lixiang采纳,获得10
46秒前
追寻的纸鹤完成签到 ,获得积分10
51秒前
yaolei完成签到,获得积分10
57秒前
大胆的渊思完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
www268完成签到 ,获得积分10
1分钟前
李爱国应助神勇麦片采纳,获得10
1分钟前
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
1分钟前
姜姜发布了新的文献求助10
1分钟前
Plank完成签到,获得积分10
1分钟前
cxin发布了新的文献求助10
1分钟前
song完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179774
求助须知:如何正确求助?哪些是违规求助? 2830272
关于积分的说明 7976073
捐赠科研通 2491754
什么是DOI,文献DOI怎么找? 1328872
科研通“疑难数据库(出版商)”最低求助积分说明 635561
版权声明 602927