A novel stacking-based predictor for accurate prediction of antimicrobial peptides

概率逻辑 计算机科学 机器学习 特征(语言学) 基线(sea) 人工智能 特征选择 抗菌肽 特征向量 支持向量机 鉴定(生物学) 数据挖掘 抗菌剂 生物 微生物学 哲学 植物 渔业 语言学
作者
Sameera Kanwal,Roha Arif,Saeed Ahmed,Muhammad Kabir
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-12 被引量:2
标识
DOI:10.1080/07391102.2024.2329298
摘要

Antimicrobial peptides (AMPs) are gaining acceptance and support as a chief antibiotic substitute since they boost human immunity. They retain a wide range of actions and have a low risk of developing resistance, which are critical properties to the pharmaceutical industry for drug discovery. Antibiotic sensitivity, however, is an issue that affects people all around the world and has the potential to one day lead to an epidemic. As cutting-edge therapeutic agents, AMPs are also expected to cure microbial infections. In order to produce tolerable drugs, it is crucial to understand the significance of the basic architecture of AMPs. Traditional laboratory methods are expensive and time-consuming for AMPs testing and detection. Currently, bioinformatics techniques are being successfully applied to the detection of AMPs. In this study, we have developed a novel STacking-based ensemble learning framework for AntiMicrobial Peptide (STAMP) prediction. First, we constructed 84 different baseline models by using 12 different feature encoding schemes and 7 popular machine learning algorithms. Second, these baseline models were trained and employed to create a new probabilistic feature vector. Finally, based on the feature selection strategy, we determined the optimal probabilistic feature vector, which was further utilized for the construction of our stacked model. Resultantly, the STAMP predictor achieved excellent performance during cross-validation with an accuracy and Matthew's correlation coefficient of 0.930 and 0.860, respectively. The corresponding metrics during the independent test were 0.710 and 0.464, respectively. Overall, STAMP achieved a more accurate and stable performance than the baseline models and significantly outperformed the existing predictors, demonstrating the effectiveness of our proposed hybrid framework. Furthermore, STAMP is expected to assist community-wide efforts in identifying AMPs and will contribute to the development of novel therapeutic methods and drug-design for immunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
makara发布了新的文献求助10
刚刚
2秒前
wym完成签到,获得积分20
2秒前
zh发布了新的文献求助10
5秒前
非凡梦完成签到,获得积分10
5秒前
巴哒完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
marker_完成签到,获得积分10
8秒前
9秒前
脑洞疼应助荷兰香猪采纳,获得10
9秒前
wanci应助Jyouang采纳,获得10
12秒前
ankh完成签到,获得积分20
13秒前
子云发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
16秒前
慕青应助jigui采纳,获得10
17秒前
我是老大应助愉快的馒头采纳,获得10
19秒前
shufessm完成签到,获得积分0
19秒前
科研通AI5应助葡萄炖雪梨采纳,获得10
20秒前
20秒前
香蕉觅云应助WWW采纳,获得10
21秒前
23秒前
王二哈完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
师霸发布了新的文献求助10
24秒前
ZYN完成签到,获得积分10
24秒前
研友_LJGGqn发布了新的文献求助10
25秒前
852应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
mammer应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
mammer应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664632
求助须知:如何正确求助?哪些是违规求助? 3224535
关于积分的说明 9758095
捐赠科研通 2934477
什么是DOI,文献DOI怎么找? 1606882
邀请新用户注册赠送积分活动 758897
科研通“疑难数据库(出版商)”最低求助积分说明 735053