材料科学
催化作用
介孔材料
质子交换膜燃料电池
化学工程
基质(水族馆)
阴极
碳纤维
无机化学
功率密度
复合材料
物理化学
有机化学
复合数
海洋学
物理
地质学
工程类
量子力学
功率(物理)
化学
作者
Li Jiao,Tanvir Alam Arman,Sooyeon Hwang,Javier Fonseca,Norbert Okolie,Ehab Shaaban,Gonghu Li,Ershuai Liu,Ugur Pasaogullari,Siddharth Komini Babu,Sanjeev Mukerjee,Jacob S. Spendelow,David A. Cullen,Frédéric Jaouen,Qingying Jia
标识
DOI:10.1002/aenm.202303952
摘要
Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H 2 /air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm −2 in H 2 /air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C 3 N 4 , leading to a micro‐mesoporous substrate.
科研通智能强力驱动
Strongly Powered by AbleSci AI