Eliminating H2O/HF and regulating interphase with bifunctional tolylene-2, 4-diisocyanate (TDI) additive for long life Li-ion battery

双功能 电解质 相间 电池(电) 化学工程 阴极 材料科学 化学 有机化学 电极 物理 工程类 量子力学 物理化学 催化作用 生物 遗传学 功率(物理)
作者
Xueyi Zeng,Xiang Gao,Peiqi Zhou,Haijia Li,Xin He,Weizhen Fan,Chaojun Fan,Tianxiang Yang,Zhen Ma,Xiaoyang Zhao,Junmin Nan
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:95: 519-528 被引量:1
标识
DOI:10.1016/j.jechem.2024.03.062
摘要

Lithium-ion batteries (LIBs) featuring a Ni-rich cathode exhibit increased specific capacity, but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challenging. Especially when the battery is operated under high temperature, the trace water present in the electrolyte will accelerate the hydrolysis of the electrolyte and the resulting HF will further erode the interphase. In order to enhance the long-term cycling performance of graphite/LiNi0.8Co0.1Mn0.1O2 (NCM811) LIBs, herein, Tolylene-2, 4-diisocyanate (TDI) additive containing lone-pair electrons is employed to formulate a novel bifunctional electrolyte aimed at eliminating H2O/HF generated at elevated temperature. After 1000 cycles at 25 °C, the battery incorporating the TDI-containing electrolyte exhibits an impressive capacity retention of 94% at 1 C. In contrast, the battery utilizing the blank electrolyte has a lower capacity retention of only 78%. Furthermore, after undergoing 550 cycles at 1 C under 45 °C, the inclusion of TDI results in a notable enhancement of capacity, increasing it from 68% to 80%. This indicates TDI has a favorable influence on the cycling performance of LIBs, especially at elevated temperatures. The analysis of the film formation mechanism suggests that the lone pair of electrons of the isocyanate group in TDI play a crucial role in inhibiting the generation of H2O and HF, which leads to the formation of a thin and dense interphase. The existence of this interphase is thought to substantially enhance the cycling performance of the LIBs. This work not only improves the performance of graphite/NCM811 batteries at room temperature and high temperature by eliminating H2O/HF but also presents a novel strategy for advancing functional electrolyte development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的觅云应助哈哈哈采纳,获得10
刚刚
科研通AI2S应助天真的耳机采纳,获得10
3秒前
VERY发布了新的文献求助10
3秒前
3秒前
slc111完成签到,获得积分10
3秒前
田様应助黎明采纳,获得10
3秒前
大宝关注了科研通微信公众号
4秒前
4秒前
4秒前
何时何昕完成签到,获得积分10
5秒前
Costing发布了新的文献求助10
5秒前
桐桐应助可乐采纳,获得30
5秒前
天天快乐应助fdu_sf采纳,获得10
5秒前
思源应助Ge采纳,获得10
5秒前
6秒前
lumos发布了新的文献求助10
7秒前
简单双组完成签到,获得积分20
9秒前
汉堡包应助秃顶双马尾采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
Snow发布了新的文献求助10
12秒前
莎akkk完成签到,获得积分10
12秒前
12秒前
feng发布了新的文献求助10
13秒前
领导范儿应助人机一号采纳,获得10
13秒前
CodeCraft应助小毛驴要加油采纳,获得10
15秒前
16秒前
zyfqpc发布了新的文献求助200
16秒前
17秒前
18秒前
天天快乐应助lumos采纳,获得10
18秒前
18秒前
18秒前
充电宝应助唯有采纳,获得10
19秒前
20秒前
大宝发布了新的文献求助10
21秒前
资山雁发布了新的文献求助10
21秒前
TuT88发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706