Promoting effect and kinetic analysis of Fe-Co bimetallic doping on the LaMnO3 catalytic activity for methane combustion

双金属片 催化作用 甲烷 燃烧 兴奋剂 化学 氧化还原 氧气 钙钛矿(结构) 催化燃烧 吸附 X射线光电子能谱 化学工程 无机化学 材料科学 物理化学 有机化学 结晶学 光电子学 工程类 生物化学
作者
Qiang Ni,Aikun Tang,Tao Cai,Qian Zhang,Zhigang Zhang,Lu Xiao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:490: 151715-151715 被引量:4
标识
DOI:10.1016/j.cej.2024.151715
摘要

To enhance the catalyst's properties, a modified sol–gel method is developed in this study, and a unique perovskite catalyst, LaMnxFeyCo1-x-yO3, is successfully synthesized by doping Fe-Co into the lattice of LaMnO3. The catalytic activity of the synthesized catalysts is initially determined by applying them to methane oxidation. Then, the structural, chemical, and surface properties of these catalysts are systematically evaluated utilizing XRD, BET, O2-TPD, H2-TPR, SEM, and XPS analyses. The modified LaMn0.8Fe0.15Co0.05O3 is shown to exhibit excellent activity (T90 at 486.5 ℃) in methane catalytic combustion, comparable to several standard noble metal materials. Experimental findings indicate that such perovskite structures have a larger specific surface area, an elevated molar ratio of Mn4+, desirable low-temperature reducibility, and excellent oxygen mobility relative to the original LaMnO3. Meanwhile, more efficient electron transfer from Mn4+/Mn3+ redox cycles, as well as the emergence of oxygen defects, significantly contribute to the robust interaction between Fe-Co and LaMnO3. Further reaction kinetic analysis is conducted to determine changes in species components and identify possible catalytic pathways. Notably, Fe-Co co-doping leads to an improvement in the increase of lattice oxygen and CH4 adsorption. In addition, the MVK kinetic mechanism governs methane combustion over LaMn0.8Fe0.15Co0.05O3. This study provides new insights into enhancing energy conversion performance and efficient utilization of ventilation air methane (VAM) through the implementation of highly efficient perovskites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RED发布了新的文献求助10
刚刚
wanci应助帅气夜梦采纳,获得10
1秒前
xiaobai发布了新的文献求助10
1秒前
2秒前
Binzhiqiang完成签到,获得积分10
3秒前
ayzyy完成签到,获得积分10
3秒前
3秒前
stay完成签到 ,获得积分10
4秒前
4秒前
5秒前
7秒前
ayzyy发布了新的文献求助10
8秒前
SYLH应助May采纳,获得10
9秒前
烟花应助现代的短靴采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
湘澜发布了新的文献求助10
10秒前
11秒前
安输完成签到,获得积分10
12秒前
13秒前
14秒前
Tatw完成签到 ,获得积分10
15秒前
18秒前
LI发布了新的文献求助10
18秒前
陶军辉完成签到 ,获得积分10
18秒前
现代的短靴完成签到,获得积分10
19秒前
20秒前
elivsZhou发布了新的文献求助10
20秒前
20秒前
21秒前
vivid完成签到,获得积分10
23秒前
科研小白包完成签到,获得积分10
23秒前
23秒前
小二郎应助LI采纳,获得10
25秒前
25秒前
SYLH应助May采纳,获得10
26秒前
28秒前
风旅完成签到,获得积分10
28秒前
29秒前
独特涫完成签到,获得积分10
29秒前
qqqq发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538670
求助须知:如何正确求助?哪些是违规求助? 3116388
关于积分的说明 9325077
捐赠科研通 2814221
什么是DOI,文献DOI怎么找? 1546519
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086