TRMM at 1km-Resolution: High-resolution precipitation data in a data-scarce Indus Basin reconstructed through data-driven spatial downscaling and remote sensing

缩小尺度 印度河 降水 遥感 环境科学 构造盆地 分辨率(逻辑) 高分辨率 图像分辨率 气候学 气象学 地质学 地理 计算机科学 地貌学 人工智能
作者
Arfan Arshad,Wanchang Zhang,Rabeea Noor
标识
DOI:10.6084/m9.figshare.24570397.v3
摘要

Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional precipitation requires high precision and high-resolution precipitation data. Satellite-based precipitation products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating high-resolution precipitation variability induced by dynamic interactions between climatic forcing, ground cover, and altitude variations. We investigated the performance of a data-driven spatial downscaling procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geo-graphically weighted regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM precipitation data using high-resolution (1 km × 1 km) explanatory variables. Results indicated that the MGWR model performed better on fit and accuracy than the RF model in predicting the precipitation. Annual TRMM estimates after downscaling and calibration not only translate the spatial heterogeneity of precipitation but also improved the agreement with rain gauge observations with a reduction in RMSE and bias of ~88 mm/year and 27%, respectively. In general, the higher reduction in bias values after downscaling and calibration procedures was noted across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m). The low performance of precipitation products across elevation zone 3 (>1000 m) might be associated with the fact that satellite observations at high-altitude regions with glacier coverage are most likely subjected to higher uncertainties. The high-resolution gridded precipitation data generated by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology in the Indus Basin. The method may have strong adaptability in other catchments of the world, with varying climates and topography conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond完成签到,获得积分10
刚刚
YCH完成签到,获得积分10
2秒前
3秒前
子彧发布了新的文献求助10
3秒前
Jasper应助wuxunxun2015采纳,获得10
4秒前
5秒前
鸠摩智完成签到,获得积分10
7秒前
乐乐应助cj采纳,获得10
8秒前
REX完成签到,获得积分10
9秒前
9秒前
娜娜发布了新的文献求助10
12秒前
12秒前
cyskdsn完成签到 ,获得积分10
12秒前
14秒前
14秒前
hhuajw应助撒旦asd采纳,获得10
17秒前
17秒前
bai发布了新的文献求助10
17秒前
腼腆的海豚完成签到,获得积分10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
旦旦旦旦旦旦完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
mengtingmei应助科研通管家采纳,获得10
19秒前
852应助LL采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
mengtingmei应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
微糖应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071