TRMM at 1km-Resolution: High-resolution precipitation data in a data-scarce Indus Basin reconstructed through data-driven spatial downscaling and remote sensing

缩小尺度 印度河 降水 遥感 环境科学 构造盆地 分辨率(逻辑) 高分辨率 图像分辨率 气候学 气象学 地质学 地理 计算机科学 地貌学 人工智能
作者
Arfan Arshad,Wanchang Zhang,Rabeea Noor
标识
DOI:10.6084/m9.figshare.24570397.v3
摘要

Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional precipitation requires high precision and high-resolution precipitation data. Satellite-based precipitation products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating high-resolution precipitation variability induced by dynamic interactions between climatic forcing, ground cover, and altitude variations. We investigated the performance of a data-driven spatial downscaling procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geo-graphically weighted regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM precipitation data using high-resolution (1 km × 1 km) explanatory variables. Results indicated that the MGWR model performed better on fit and accuracy than the RF model in predicting the precipitation. Annual TRMM estimates after downscaling and calibration not only translate the spatial heterogeneity of precipitation but also improved the agreement with rain gauge observations with a reduction in RMSE and bias of ~88 mm/year and 27%, respectively. In general, the higher reduction in bias values after downscaling and calibration procedures was noted across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m). The low performance of precipitation products across elevation zone 3 (>1000 m) might be associated with the fact that satellite observations at high-altitude regions with glacier coverage are most likely subjected to higher uncertainties. The high-resolution gridded precipitation data generated by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology in the Indus Basin. The method may have strong adaptability in other catchments of the world, with varying climates and topography conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小强x完成签到,获得积分10
刚刚
_hhhjhhh完成签到,获得积分10
1秒前
Laura完成签到 ,获得积分10
1秒前
科研通AI6应助WenyHe采纳,获得10
1秒前
马明旋完成签到,获得积分10
1秒前
司空天磊完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
tangyuan发布了新的文献求助10
3秒前
wanna完成签到,获得积分10
3秒前
青阳完成签到,获得积分10
3秒前
儒雅的巧曼完成签到,获得积分10
3秒前
斯文败类应助紫菜采纳,获得10
4秒前
殷勤的问玉完成签到,获得积分10
4秒前
4秒前
科目三应助雪山飞龙采纳,获得30
5秒前
昵称完成签到,获得积分10
5秒前
391X小king发布了新的文献求助10
5秒前
文静谷秋完成签到,获得积分10
5秒前
5秒前
罗斯ROSE完成签到 ,获得积分10
5秒前
AAA建材王哥完成签到,获得积分10
5秒前
田様应助zhang采纳,获得10
6秒前
英勇凝旋完成签到,获得积分10
6秒前
彩色的过客完成签到,获得积分10
6秒前
永不言弃完成签到,获得积分0
6秒前
大力的洪纲完成签到,获得积分10
6秒前
6秒前
slm完成签到,获得积分10
6秒前
武科大完成签到,获得积分10
7秒前
zgrmws应助Hi采纳,获得20
7秒前
SS完成签到,获得积分10
7秒前
丘比特应助蓦回采纳,获得10
7秒前
Miao完成签到,获得积分10
7秒前
8秒前
可爱的豆芽完成签到,获得积分10
8秒前
明亮悒发布了新的文献求助10
8秒前
QQ不需要昵称完成签到,获得积分10
8秒前
成永福完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508