TRMM at 1km-Resolution: High-resolution precipitation data in a data-scarce Indus Basin reconstructed through data-driven spatial downscaling and remote sensing

缩小尺度 印度河 降水 遥感 环境科学 构造盆地 分辨率(逻辑) 高分辨率 图像分辨率 气候学 气象学 地质学 地理 计算机科学 地貌学 人工智能
作者
Arfan Arshad,Wanchang Zhang,Rabeea Noor
标识
DOI:10.6084/m9.figshare.24570397.v3
摘要

Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional precipitation requires high precision and high-resolution precipitation data. Satellite-based precipitation products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating high-resolution precipitation variability induced by dynamic interactions between climatic forcing, ground cover, and altitude variations. We investigated the performance of a data-driven spatial downscaling procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geo-graphically weighted regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM precipitation data using high-resolution (1 km × 1 km) explanatory variables. Results indicated that the MGWR model performed better on fit and accuracy than the RF model in predicting the precipitation. Annual TRMM estimates after downscaling and calibration not only translate the spatial heterogeneity of precipitation but also improved the agreement with rain gauge observations with a reduction in RMSE and bias of ~88 mm/year and 27%, respectively. In general, the higher reduction in bias values after downscaling and calibration procedures was noted across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m). The low performance of precipitation products across elevation zone 3 (>1000 m) might be associated with the fact that satellite observations at high-altitude regions with glacier coverage are most likely subjected to higher uncertainties. The high-resolution gridded precipitation data generated by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology in the Indus Basin. The method may have strong adaptability in other catchments of the world, with varying climates and topography conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cynthia发布了新的文献求助30
刚刚
共享精神应助shenyanlei采纳,获得10
1秒前
wwww发布了新的文献求助10
1秒前
蔡菜菜完成签到,获得积分10
2秒前
852应助小余采纳,获得10
2秒前
饱满秋完成签到,获得积分10
3秒前
夜白发布了新的文献求助20
3秒前
搜集达人应助明月清风采纳,获得10
3秒前
希夷发布了新的文献求助10
4秒前
4秒前
爆米花应助通~采纳,获得10
4秒前
苏靖完成签到,获得积分10
4秒前
luoyutian发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研通AI5应助猪猪采纳,获得10
5秒前
5秒前
海绵体宝宝应助an采纳,获得10
6秒前
wwww完成签到,获得积分10
6秒前
6秒前
桐桐应助柔弱凡松采纳,获得10
6秒前
爆米花应助丶呆久自然萌采纳,获得10
7秒前
7秒前
wanyanjin应助流云采纳,获得10
7秒前
心花怒放发布了新的文献求助10
8秒前
DrYang发布了新的文献求助10
8秒前
8秒前
跑在颖完成签到,获得积分20
8秒前
希望天下0贩的0应助Jackson采纳,获得10
8秒前
徐徐发布了新的文献求助10
9秒前
落花生完成签到,获得积分10
9秒前
y123完成签到 ,获得积分10
9秒前
mnm完成签到,获得积分10
9秒前
9秒前
狂野雁丝应助小张张采纳,获得10
10秒前
qwt_hello关注了科研通微信公众号
10秒前
12彡完成签到,获得积分10
10秒前
虾仁发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762