缩小尺度
印度河
降水
遥感
环境科学
构造盆地
分辨率(逻辑)
高分辨率
图像分辨率
气候学
气象学
地质学
地理
计算机科学
地貌学
人工智能
作者
Arfan Arshad,Wanchang Zhang,Rabeea Noor
标识
DOI:10.6084/m9.figshare.24570397.v3
摘要
Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional precipitation requires high precision and high-resolution precipitation data. Satellite-based precipitation products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating high-resolution precipitation variability induced by dynamic interactions between climatic forcing, ground cover, and altitude variations. We investigated the performance of a data-driven spatial downscaling procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geo-graphically weighted regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM precipitation data using high-resolution (1 km × 1 km) explanatory variables. Results indicated that the MGWR model performed better on fit and accuracy than the RF model in predicting the precipitation. Annual TRMM estimates after downscaling and calibration not only translate the spatial heterogeneity of precipitation but also improved the agreement with rain gauge observations with a reduction in RMSE and bias of ~88 mm/year and 27%, respectively. In general, the higher reduction in bias values after downscaling and calibration procedures was noted across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m). The low performance of precipitation products across elevation zone 3 (>1000 m) might be associated with the fact that satellite observations at high-altitude regions with glacier coverage are most likely subjected to higher uncertainties. The high-resolution gridded precipitation data generated by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology in the Indus Basin. The method may have strong adaptability in other catchments of the world, with varying climates and topography conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI