TRMM at 1km-Resolution: High-resolution precipitation data in a data-scarce Indus Basin reconstructed through data-driven spatial downscaling and remote sensing

缩小尺度 印度河 降水 遥感 环境科学 构造盆地 分辨率(逻辑) 高分辨率 图像分辨率 气候学 气象学 地质学 地理 计算机科学 地貌学 人工智能
作者
Arfan Arshad,Wanchang Zhang,Rabeea Noor
标识
DOI:10.6084/m9.figshare.24570397.v3
摘要

Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional precipitation requires high precision and high-resolution precipitation data. Satellite-based precipitation products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating high-resolution precipitation variability induced by dynamic interactions between climatic forcing, ground cover, and altitude variations. We investigated the performance of a data-driven spatial downscaling procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geo-graphically weighted regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM precipitation data using high-resolution (1 km × 1 km) explanatory variables. Results indicated that the MGWR model performed better on fit and accuracy than the RF model in predicting the precipitation. Annual TRMM estimates after downscaling and calibration not only translate the spatial heterogeneity of precipitation but also improved the agreement with rain gauge observations with a reduction in RMSE and bias of ~88 mm/year and 27%, respectively. In general, the higher reduction in bias values after downscaling and calibration procedures was noted across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m). The low performance of precipitation products across elevation zone 3 (>1000 m) might be associated with the fact that satellite observations at high-altitude regions with glacier coverage are most likely subjected to higher uncertainties. The high-resolution gridded precipitation data generated by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology in the Indus Basin. The method may have strong adaptability in other catchments of the world, with varying climates and topography conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元谷雪发布了新的文献求助10
1秒前
Lucas应助伶俐盼海采纳,获得10
2秒前
科研通AI2S应助paulmichael采纳,获得10
2秒前
共享精神应助啦啦啦啦啦采纳,获得10
3秒前
4秒前
加厚加大发布了新的文献求助10
4秒前
vhjino完成签到,获得积分10
4秒前
白枫完成签到 ,获得积分10
5秒前
6秒前
wuyou发布了新的文献求助10
7秒前
葛稀发布了新的文献求助10
7秒前
微笑的小刺猬完成签到,获得积分20
7秒前
赘婿应助难过的谷芹采纳,获得10
8秒前
9秒前
Akim应助tlotw41采纳,获得10
9秒前
蛋卷发布了新的文献求助10
10秒前
10秒前
long发布了新的文献求助10
10秒前
共享精神应助沉默的金鱼采纳,获得10
11秒前
tjbdlyh完成签到 ,获得积分10
11秒前
xo80完成签到 ,获得积分10
11秒前
11秒前
mu发布了新的文献求助10
11秒前
赘婿应助学术裁缝采纳,获得10
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
香香香发布了新的文献求助10
16秒前
武林小鸟完成签到,获得积分10
17秒前
Owen应助蛋卷采纳,获得10
17秒前
祝顺遂发布了新的文献求助10
18秒前
18秒前
0701完成签到 ,获得积分10
18秒前
许许完成签到,获得积分10
19秒前
Ternura完成签到,获得积分20
19秒前
19秒前
一叶扁舟完成签到 ,获得积分10
19秒前
xx发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497