亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VTR: an optimized vision transformer for SAR ATR acceleration on FPGA

现场可编程门阵列 计算机科学 变压器 加速度 计算机视觉 人工智能 嵌入式系统 电气工程 工程类 物理 电压 经典力学
作者
Sachini Wickramasinghe,Dhruv Parikh,Bingyi Zhang,Rajgopal Kannan,Viktor K. Prasanna,Carl Busart
标识
DOI:10.1117/12.3013580
摘要

Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) is a key technique used in military applications like remote-sensing image recognition.Vision Transformers (ViTs) are the state-of-the-art in various computer vision applications, outperforming Convolutional Neural Networks (CNNs).However, using ViTs for SAR ATR applications is challenging due to (1) standard ViTs require extensive training data to generalize well due to their low locality.The standard SAR datasets have a limited number of labeled training data, reducing the learning capability of ViTs (2) ViTs have a high parameter count and are computation intensive which makes their deployment on resource-constrained SAR platforms difficult.In this work, we develop a lightweight ViT model that can be trained directly on small datasets without pre-training.To this end, we incorporate the Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA) modules into the ViT model.We directly train this model on SAR datasets to evaluate its effectiveness for SAR ATR applications.The proposed model, VTR (ViT for SAR ATR), is evaluated on three widely used SAR datasets: MSTAR, SynthWakeSAR, and GBSAR.Experimental results show that the proposed VTR model achieves a classification accuracy of 95.96%, 93.47%, and 99.46% on MSTAR, SynthWakeSAR, and GBSAR datasets, respectively.VTR achieves accuracy comparable to the state-of-the-art models on MSTAR and GBSAR datasets with 1.1× and 36× smaller model sizes, respectively.On SynthWakeSAR dataset, VTR achieves a higher accuracy with a model size that is 17× smaller.Further, a novel FPGA accelerator is proposed for VTR, to enable real-time SAR ATR applications.Compared with the implementation of VTR on state-of-the-art CPU and GPU platforms, our FPGA implementation achieves latency reduction by a factor of 70× and 30×, respectively.For inference on small batch sizes, our FPGA implementation achieves a 2× higher throughput compared with GPU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
10秒前
阿俊发布了新的文献求助10
14秒前
填充物完成签到 ,获得积分10
23秒前
43秒前
hongt05完成签到 ,获得积分10
43秒前
51秒前
1分钟前
隐形曼青应助Hour采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
2分钟前
科研通AI2S应助云梦采纳,获得10
2分钟前
2分钟前
非洲大象发布了新的文献求助300
2分钟前
2分钟前
平常从蓉完成签到,获得积分10
3分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
Hour发布了新的文献求助10
4分钟前
Hour完成签到,获得积分10
4分钟前
wangye完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
安详的海风完成签到,获得积分10
5分钟前
5分钟前
5分钟前
nano发布了新的文献求助10
5分钟前
Polymer72应助科研通管家采纳,获得20
5分钟前
英姑应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
coolru完成签到 ,获得积分10
6分钟前
Luuu完成签到 ,获得积分20
6分钟前
传奇3应助我喜欢下雪采纳,获得10
6分钟前
爱吃橙子皮完成签到 ,获得积分10
7分钟前
非洲大象发布了新的文献求助50
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 800
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353491
求助须知:如何正确求助?哪些是违规求助? 2978141
关于积分的说明 8683772
捐赠科研通 2659505
什么是DOI,文献DOI怎么找? 1456277
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020