The Deep Learning Framework iCanTCR Enables Early Cancer Detection Using the T-cell Receptor Repertoire in Peripheral Blood

外周血 剧目 外围设备 癌症 受体 计算生物学 生物 免疫学 医学 癌症研究 内科学 物理 声学
作者
Yideng Cai,Meng Luo,Wenyi Yang,Chang Xu,Pingping Wang,Guangfu Xue,Xiyun Jin,Rui Cheng,Jinhao Que,Wenyang Zhou,Boran Pang,Shouping Xu,Yu Li,Qinghua Jiang,Zhaochun Xu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (11): 1915-1928
标识
DOI:10.1158/0008-5472.can-23-0860
摘要

Abstract T cells recognize tumor antigens and initiate an anticancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T-cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stage. Here, we developed the deep learning framework iCanTCR to identify patients with cancer based on the TCR repertoire. The iCanTCR framework uses TCRβ sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2,000 publicly available TCR repertoires from 11 types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish patients with cancer from noncancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an AUC of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for noninvasive cancer diagnosis. Significance: Development of a deep learning–based method for multicancer detection using the TCR repertoire in the peripheral blood establishes the potential of evaluating circulating immune signals for noninvasive early cancer detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rrr完成签到,获得积分10
1秒前
Hello应助鱿鱼苦瓜汤采纳,获得10
2秒前
2秒前
3秒前
赘婿应助淡然元彤采纳,获得20
3秒前
wsq完成签到,获得积分10
4秒前
4秒前
4秒前
英俊的芙蓉关注了科研通微信公众号
4秒前
Esther发布了新的文献求助10
4秒前
ericzhouxx发布了新的文献求助10
4秒前
闪闪龙猫完成签到,获得积分20
5秒前
00liu完成签到,获得积分10
5秒前
小马甲应助阿瑶采纳,获得10
6秒前
TheBugsss完成签到,获得积分10
6秒前
大意的羊完成签到,获得积分10
6秒前
这啥呀完成签到,获得积分10
6秒前
7秒前
8秒前
小糯米发布了新的文献求助10
8秒前
9秒前
Owen应助LYY采纳,获得10
9秒前
LDDD发布了新的文献求助10
10秒前
真夏夜の顶刊梦完成签到,获得积分10
11秒前
11秒前
达蒙璃完成签到 ,获得积分0
12秒前
学会了吗完成签到,获得积分10
12秒前
13秒前
13秒前
ding应助Hang采纳,获得10
14秒前
万能图书馆应助半岛铁盒采纳,获得10
14秒前
14秒前
15秒前
15秒前
无限的宫苴完成签到 ,获得积分20
15秒前
16秒前
16秒前
阿瑶发布了新的文献求助10
16秒前
iNk应助爱76的5采纳,获得20
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228715
求助须知:如何正确求助?哪些是违规求助? 2876473
关于积分的说明 8195167
捐赠科研通 2543670
什么是DOI,文献DOI怎么找? 1373912
科研通“疑难数据库(出版商)”最低求助积分说明 646868
邀请新用户注册赠送积分活动 621453