Atomic-Resolution In Situ Exploration of the Phase Transition Triggered Failure in a Single-Crystalline Ni-Rich Cathode

材料科学 阴极 相变 相(物质) 化学物理 原子单位 离子 电化学 结构稳定性 降级(电信) 锂(药物) 透射电子显微镜 化学工程 纳米技术 电极 凝聚态物理 物理化学 化学 物理 有机化学 医学 电信 量子力学 结构工程 内分泌学 计算机科学 工程类
作者
Jiaxuan Tang,Binghua Zhao,Zhichao Wang,Jing-Chang Li,Shaohua Guo,Jeeyoung Shin,Meiyu Wang,Yu Deng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (13): 16075-16085
标识
DOI:10.1021/acsami.3c18027
摘要

Single-crystalline cathode materials LiNixCoyMn1–y–zO2 (x ≥ 0.6) are important candidates for obtaining better cyclic stability and achieving high energy densities of Li-ion batteries. However, it is liable to initiate phase transitions inside the grains during electrochemical cycling, and the processes and regions of these phase transitions have remained unknown. In this research, we conducted an intrinsic study, investigating the chemicals and microstructural evolution of single-crystalline LiNi0.83Co0.11Mn0.06O2 using in situ biasing transmission electron microscopy at an atomic scale. We observed that the layered structure on the surface of the single-crystalline material was degraded during the charging process, resulting in continuous phase transitions and the formation of surface oxygen vacancies, which can reduce both the structural and thermal stability of the material. Uneven delithiation led to the formation of high-density defects and discontinuous inactive electrochemical phases, such as local antiphase boundaries and the rock salt phase, in the bulk of the material. The non-uniformity of the structure and the coexistence of active and inactive phases introduce significant tensile stress, which can lead to intragranular cracks inside the grains. As the number of cycles increases, the structural degradation caused by the intragranular phase transition will further increase, ultimately affecting the cycling capacity and stability of the battery. This work has broad implications for creating lithium-ion batteries that are effective and long-lasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
zzl完成签到,获得积分10
3秒前
叮叮当当发布了新的文献求助10
4秒前
5秒前
wan完成签到,获得积分10
6秒前
念姬发布了新的文献求助10
6秒前
愉快太清发布了新的文献求助10
8秒前
花卷完成签到,获得积分10
9秒前
CodeCraft应助llllly采纳,获得10
13秒前
xiaobai完成签到,获得积分10
14秒前
Xiaoxiao应助调皮的曼安采纳,获得10
14秒前
LCC完成签到,获得积分10
15秒前
15秒前
嗯_好完成签到,获得积分10
16秒前
Akim应助陈纸溪采纳,获得10
16秒前
烟花应助无心的白桃采纳,获得30
16秒前
18秒前
归尘发布了新的文献求助10
18秒前
岱山完成签到,获得积分10
19秒前
魔猿完成签到,获得积分10
19秒前
19秒前
小马甲应助一叶知秋采纳,获得10
20秒前
巧克力小蛋糕完成签到,获得积分10
20秒前
21秒前
weeee发布了新的文献求助10
22秒前
英吉利25发布了新的文献求助10
22秒前
24秒前
24秒前
24秒前
甘草发布了新的文献求助10
24秒前
xiaocui发布了新的文献求助10
25秒前
爆米花应助野性的曼香采纳,获得10
29秒前
老迟到的向日葵应助Lynn采纳,获得30
29秒前
29秒前
陈纸溪发布了新的文献求助10
30秒前
31秒前
33秒前
健壮保温杯完成签到,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579