Review of battery state estimation methods for electric vehicles - Part I: SOC estimation

估计 电池(电) 国家(计算机科学) 汽车工程 计算机科学 荷电状态 工程类 系统工程 功率(物理) 算法 物理 量子力学
作者
Osman Demirci,Sezai Taşkın,Erik Schaltz,Burcu Acar Demirci
出处
期刊:Journal of energy storage [Elsevier]
卷期号:87: 111435-111435 被引量:43
标识
DOI:10.1016/j.est.2024.111435
摘要

This study presents a comprehensive review of State of Charge (SOC) estimation methods for Lithium-Ion (Li-Ion) batteries, with a specific focus on Electric Vehicles (EVs). The growing interest in EVs and the need for efficient battery management have driven advancements in SOC estimation techniques. Various approaches, including data-driven techniques, advanced filtering methods, and machine learning algorithms have been explored to enhance SOC estimation accuracy. The integration of artificial intelligence and hybrid models has shown promising results in improving SOC estimation performance. However, challenges remain in dealing with non-linear battery behavior, temperature variations, and diverse operating conditions. Researchers are continuously studying to improve the robustness and adaptability of SOC estimation methods to address these challenges. The primary objective of this study is to provide an up-to-date summary of the latest advancements in SOC estimation, offering insights into innovative approaches and developments in this field. All existing SOC methods, their advantages, challenges, and usage rates have been comprehensively examined with a specific focus on EV battery management systems. As the EV market continues to expand, accurate SOC estimation will remain essential for optimal battery management and overall EV performance. Future research will focus on refining existing algorithms, exploring new data-driven techniques, and integrating advanced sensor technologies to achieve real-time and reliable SOC estimation in EVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助大番茄采纳,获得10
刚刚
64258关注了科研通微信公众号
1秒前
1秒前
负责的初蝶完成签到,获得积分20
1秒前
haimianbaobao完成签到 ,获得积分10
1秒前
1秒前
研友_VZG7GZ应助下凡的天使采纳,获得10
2秒前
jing完成签到,获得积分20
3秒前
sunny发布了新的文献求助10
3秒前
脑洞疼应助高高ai采纳,获得10
3秒前
4秒前
大饼卷烤香鸡扒蛋完成签到 ,获得积分20
5秒前
yan发布了新的文献求助10
5秒前
静不净发布了新的文献求助10
5秒前
5秒前
7秒前
酷酷一笑完成签到,获得积分10
7秒前
9秒前
清秀面包发布了新的文献求助10
9秒前
默默发布了新的文献求助10
9秒前
叶芴发布了新的文献求助10
10秒前
牛牛完成签到,获得积分10
10秒前
汉堡包应助zhangh65采纳,获得10
10秒前
访云完成签到 ,获得积分10
10秒前
徐小锤完成签到 ,获得积分10
10秒前
李健应助sue401采纳,获得10
11秒前
rid4iuclous2完成签到,获得积分10
11秒前
烟花应助过噻采纳,获得10
12秒前
w1完成签到 ,获得积分10
12秒前
领导范儿应助哼哼唧唧采纳,获得10
13秒前
13秒前
yan完成签到,获得积分10
14秒前
jing发布了新的文献求助10
14秒前
默默完成签到,获得积分10
15秒前
我是老大应助Dongbalal采纳,获得10
15秒前
单薄的西装完成签到,获得积分10
15秒前
海绵宝宝发布了新的文献求助10
15秒前
16秒前
情怀应助阿迦采纳,获得10
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466331
求助须知:如何正确求助?哪些是违规求助? 3059103
关于积分的说明 9064903
捐赠科研通 2749598
什么是DOI,文献DOI怎么找? 1508640
科研通“疑难数据库(出版商)”最低求助积分说明 696987
邀请新用户注册赠送积分活动 696718