吸附
微型多孔材料
化学工程
碳纤维
材料科学
生物量(生态学)
选择性
多孔性
活性炭
纳米技术
有机化学
化学
复合材料
催化作用
海洋学
地质学
工程类
复合数
作者
Meng Cao,Yu Shu,Qiuhong Bai,Cong Li,Bang Chen,Yehua Shen,Hiroshi Uyama
标识
DOI:10.1016/j.scitotenv.2023.163750
摘要
Biomass-based adsorbents are considered to have great potential for CO2 capture due to their low cost, high efficiency and exceptional sustainability. The aim of this work is to design a simple method for preparing biomass-based adsorbents with abundant active sites and large numbers of narrow micropores, so as to enhance CO2 capture performance. Herein, N, S co-doped porous carbon (NSPC) was created utilizing walnut shell-based microporous carbon (WSMC) as the main framework and thiourea as N/S dopant through physical grinding and post-treatment process at a moderate temperature without any other reagents and steps. By altering the post-treatment parameters, a series of porous carbons with varying physico-chemical properties were prepared to discuss the roles of microporosity and N/S functional groups in CO2 adsorption. NSPC with narrow micropore volume of 0.74 cm3 g-1, N content of 4.89 % and S contents of 0.71 % demonstrated the highest CO2 adsorption capacity of 7.26 (0 °C) and 5.51 mmol g-1 (25 °C) at 1 bar. Meanwhile, a good selectivity of binary gas mixture CO2/N2 (15/85) of 29.72 and outstanding recyclability after ten cycles of almost 100 % adsorption capacity retention were achieved. The proposed post-treatment method was beneficial in maintaining the narrow micropores and forming N/S active sites, which together improve the CO2 adsorption performance of NSPC. The novel NSPC displays amazing CO2 adsorption characteristics, and the practical, affordable synthetic approach exhibits significant potential to produce highly effective CO2 adsorbents on a broad scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI