A practical method for connectivity and coverage reliability analysis for linear wireless sensor networks

计算机科学 无线传感器网络 可靠性(半导体) 二元决策图 无线 度量(数据仓库) 无线网络 可靠性工程 分布式计算 数据挖掘 计算机网络 工程类 理论计算机科学 电信 功率(物理) 物理 量子力学
作者
Haibo Yang
出处
期刊:Ad hoc networks [Elsevier]
卷期号:146: 103183-103183 被引量:9
标识
DOI:10.1016/j.adhoc.2023.103183
摘要

Linear Wireless Sensor Networks (LWSNs) are the most suitable wireless sensor networks (WSNs) for monitoring the condition of infrastructures with linear typologies, e.g., railways, gas, or oil pipelines. Reliability of LWSNs is crucial for such applications due to their safety–critical or mission-critical nature. To this end, LWSNs of different designs need to be compared in terms of reliability to ascertain high-cost performance. Connectivity and coverage are fundamental metrics used to measure the reliability of LWSNs. However, to the best of our knowledge, there are no proper methods or tools to evaluate the reliability of LWSNs concurrently in terms of connectivity and coverage. In this paper, by reducing the size of system state space depending on the characteristics of LWSNs, we present a practical method for concurrent reliability analysis in terms of connectivity and coverage for LWSNs based on hybrid models of binary decision diagrams and divide-and-conquer schemes. The proposed method can be used to assess various LWSNs, e.g., networks with one or two sink nodes, as well as flat-based or cluster-based networks. Moreover, transmission and coverage ranges can be assigned to sensor nodes using this method. Case studies are presented to substantiate the viability of the proposed model, and some beneficial results are deduced, which can be considered to serve as basic principles for LWSN-design to ensure high-cost performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷眼观潮完成签到,获得积分10
刚刚
刚刚
守约发布了新的文献求助10
1秒前
2秒前
凌小飞侠发布了新的文献求助10
2秒前
小T儿完成签到,获得积分10
2秒前
MicroCytoYL发布了新的文献求助10
2秒前
yzy发布了新的文献求助10
3秒前
从来都不会放弃zr完成签到,获得积分10
3秒前
点点发布了新的文献求助10
3秒前
科研通AI2S应助Feng采纳,获得10
3秒前
张小小完成签到,获得积分10
3秒前
hata发布了新的文献求助10
4秒前
4秒前
yangyangyang发布了新的文献求助10
4秒前
keran发布了新的文献求助10
4秒前
shin0324完成签到,获得积分10
5秒前
pencil123应助易达采纳,获得10
5秒前
守约完成签到,获得积分10
6秒前
7秒前
7秒前
愤怒的之玉完成签到 ,获得积分10
8秒前
8秒前
欧阳小枫完成签到,获得积分10
8秒前
江海下百川完成签到,获得积分10
8秒前
8秒前
JamesPei应助小宇采纳,获得10
9秒前
9秒前
阿桂完成签到,获得积分10
9秒前
9秒前
沙比完成签到,获得积分10
10秒前
一一完成签到,获得积分10
10秒前
MicroCytoYL完成签到,获得积分10
11秒前
11秒前
一只特立独行的朱完成签到,获得积分10
11秒前
步行街车神ahua完成签到,获得积分10
11秒前
11秒前
keran完成签到,获得积分20
11秒前
1111发布了新的文献求助10
11秒前
动如脱兔发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672