AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification

卷积神经网络 计算机科学 高光谱成像 人工智能 特征提取 模式识别(心理学) 深度学习 上下文图像分类 特征(语言学) 人工神经网络 机器学习 图像(数学) 语言学 哲学
作者
Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Yu Xue,Juan M. Haut,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:38
标识
DOI:10.1109/tgrs.2023.3272639
摘要

Convolutional models have provided outstanding performance in the analysis of hyperspectral images (HSIs). These architectures are carefully designed to extract intricate information from non-linear features for classification tasks. Notwithstanding their results, model architectures are manually engineered and further optimized for generalized feature extraction. In general terms, deep architectures are time consuming for complex scenarios since they require fine tuning. Neural architecture search (NAS) has emerged as a suitable approach to tackle this shortcoming. In parallel, modern attention-based methods have boosted the recognition of sophisticated features. The search for optimal neural architectures combined with attention procedures motivates the development of this work. This paper develops a new method to automatically design and optimize convolutional neural networks (CNNs) for HSI classification using channel-based attention mechanisms. Specifically, one-dimensional (1D) and spectral-spatial (3D) classifiers are considered to handle the large amount of information contained in HSIs from different perspectives. Furthermore, the proposed AAtt-CNN method meets the requirement to lower the large computational overheads associated with architectural search. It is compared with current state-of-the-art (SOTA) classifiers. Our experiments, conducted using a wide range of HSI images, demonstrate that AAtt-CNN succeeds in finding optimal architectures for classification, leading to SOTA results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu11发布了新的文献求助10
刚刚
刚刚
叶访云发布了新的文献求助10
1秒前
欣慰元蝶应助leslie采纳,获得10
1秒前
1秒前
支原体感染力完成签到,获得积分10
2秒前
无花果应助嘉嘉嘉嘉嘉采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
星辰大海应助龙山采纳,获得10
2秒前
Aoopiy完成签到,获得积分10
2秒前
隐形曼青应助李佳采纳,获得10
3秒前
犹豫酸奶发布了新的文献求助10
4秒前
敏感小霸王关注了科研通微信公众号
4秒前
带象发布了新的文献求助10
4秒前
水水完成签到,获得积分20
4秒前
4秒前
充电宝应助风清扬采纳,获得10
4秒前
汤圆发布了新的文献求助10
5秒前
小二郎应助王哈哈采纳,获得10
5秒前
5秒前
大碗发布了新的文献求助20
5秒前
玄风完成签到,获得积分0
5秒前
大模型应助34Kenny采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
思源应助LooQueSiento采纳,获得20
7秒前
7秒前
WINK完成签到,获得积分10
7秒前
NexusExplorer应助阿里嘎多采纳,获得10
8秒前
赫诗桃发布了新的文献求助10
8秒前
楠810217完成签到,获得积分10
8秒前
哲999发布了新的文献求助10
8秒前
8秒前
1473057467完成签到,获得积分10
8秒前
Lee发布了新的文献求助10
8秒前
陆木子发布了新的文献求助10
8秒前
无极微光应助柯佳君采纳,获得20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594