AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification

卷积神经网络 计算机科学 高光谱成像 人工智能 特征提取 模式识别(心理学) 深度学习 上下文图像分类 特征(语言学) 人工神经网络 机器学习 图像(数学) 语言学 哲学
作者
Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Yu Xue,Juan M. Haut,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:38
标识
DOI:10.1109/tgrs.2023.3272639
摘要

Convolutional models have provided outstanding performance in the analysis of hyperspectral images (HSIs). These architectures are carefully designed to extract intricate information from non-linear features for classification tasks. Notwithstanding their results, model architectures are manually engineered and further optimized for generalized feature extraction. In general terms, deep architectures are time consuming for complex scenarios since they require fine tuning. Neural architecture search (NAS) has emerged as a suitable approach to tackle this shortcoming. In parallel, modern attention-based methods have boosted the recognition of sophisticated features. The search for optimal neural architectures combined with attention procedures motivates the development of this work. This paper develops a new method to automatically design and optimize convolutional neural networks (CNNs) for HSI classification using channel-based attention mechanisms. Specifically, one-dimensional (1D) and spectral-spatial (3D) classifiers are considered to handle the large amount of information contained in HSIs from different perspectives. Furthermore, the proposed AAtt-CNN method meets the requirement to lower the large computational overheads associated with architectural search. It is compared with current state-of-the-art (SOTA) classifiers. Our experiments, conducted using a wide range of HSI images, demonstrate that AAtt-CNN succeeds in finding optimal architectures for classification, leading to SOTA results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助英吉利25采纳,获得10
1秒前
Kenzonvay发布了新的文献求助10
2秒前
Luna完成签到 ,获得积分10
4秒前
汉堡包应助chenzhi采纳,获得10
7秒前
充电宝应助dd99081采纳,获得10
8秒前
8秒前
花花完成签到 ,获得积分10
10秒前
10秒前
老谢发布了新的文献求助10
11秒前
check003完成签到,获得积分10
11秒前
fortune完成签到,获得积分10
12秒前
彳亍完成签到,获得积分10
14秒前
15秒前
17秒前
Lin完成签到,获得积分10
18秒前
18秒前
斯文败类应助乐观鑫鹏采纳,获得10
20秒前
浮游应助LHP采纳,获得10
21秒前
Lulul发布了新的文献求助10
22秒前
bai完成签到,获得积分10
22秒前
十一玮发布了新的文献求助10
23秒前
xdmhv完成签到,获得积分10
27秒前
28秒前
Akim应助Tian采纳,获得10
30秒前
水水的完成签到 ,获得积分10
32秒前
球球尧伞耳完成签到,获得积分10
35秒前
John完成签到,获得积分10
36秒前
38秒前
酷波er应助纯真猕猴桃采纳,获得10
38秒前
39秒前
didi发布了新的文献求助10
39秒前
万能图书馆应助qianqina采纳,获得30
39秒前
暮烟应助Lulul采纳,获得10
39秒前
虚幻的冬瓜完成签到 ,获得积分10
42秒前
小翼发布了新的文献求助10
44秒前
46秒前
49秒前
glay发布了新的文献求助10
53秒前
想睡觉的小笼包完成签到 ,获得积分10
53秒前
称心映寒完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969