AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification

卷积神经网络 计算机科学 高光谱成像 人工智能 特征提取 模式识别(心理学) 深度学习 上下文图像分类 特征(语言学) 人工神经网络 机器学习 图像(数学) 语言学 哲学
作者
Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Yu Xue,Juan M. Haut,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:8
标识
DOI:10.1109/tgrs.2023.3272639
摘要

Convolutional models have provided outstanding performance in the analysis of hyperspectral images (HSIs). These architectures are carefully designed to extract intricate information from non-linear features for classification tasks. Notwithstanding their results, model architectures are manually engineered and further optimized for generalized feature extraction. In general terms, deep architectures are time consuming for complex scenarios since they require fine tuning. Neural architecture search (NAS) has emerged as a suitable approach to tackle this shortcoming. In parallel, modern attention-based methods have boosted the recognition of sophisticated features. The search for optimal neural architectures combined with attention procedures motivates the development of this work. This paper develops a new method to automatically design and optimize convolutional neural networks (CNNs) for HSI classification using channel-based attention mechanisms. Specifically, one-dimensional (1D) and spectral-spatial (3D) classifiers are considered to handle the large amount of information contained in HSIs from different perspectives. Furthermore, the proposed AAtt-CNN method meets the requirement to lower the large computational overheads associated with architectural search. It is compared with current state-of-the-art (SOTA) classifiers. Our experiments, conducted using a wide range of HSI images, demonstrate that AAtt-CNN succeeds in finding optimal architectures for classification, leading to SOTA results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦完成签到,获得积分10
1秒前
liu发布了新的文献求助10
2秒前
2秒前
阳光的伊发布了新的文献求助10
4秒前
rachel完成签到,获得积分20
4秒前
跟我回江南完成签到,获得积分10
4秒前
lucky发布了新的文献求助30
5秒前
5秒前
乖就完成签到,获得积分10
7秒前
科目三应助是小程啊采纳,获得10
8秒前
陶醉幻丝发布了新的文献求助10
8秒前
思源应助阳光的伊采纳,获得10
9秒前
柚子完成签到 ,获得积分10
9秒前
天天快乐应助虾米君采纳,获得10
9秒前
栗子熊发布了新的文献求助10
9秒前
慕雨倾欣完成签到,获得积分10
10秒前
完美世界应助111采纳,获得10
10秒前
chenhua5460完成签到,获得积分10
10秒前
hai发布了新的文献求助10
11秒前
蜜HHH完成签到 ,获得积分10
11秒前
11秒前
YAUNYAUN完成签到,获得积分10
13秒前
13秒前
13秒前
tong童完成签到 ,获得积分10
14秒前
科研通AI6应助幽默孤容采纳,获得10
16秒前
米米发布了新的文献求助10
16秒前
酷炫小甜瓜完成签到 ,获得积分10
17秒前
18秒前
Ava应助积极以云采纳,获得10
18秒前
机智翼完成签到,获得积分10
19秒前
Jing发布了新的文献求助10
19秒前
科研通AI6应助Wu采纳,获得10
21秒前
是小程啊发布了新的文献求助10
22秒前
酷波er应助bo采纳,获得10
22秒前
RP-H发布了新的文献求助30
22秒前
22秒前
YAUNYAUN发布了新的文献求助10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547211
求助须知:如何正确求助?哪些是违规求助? 3978236
关于积分的说明 12318371
捐赠科研通 3646777
什么是DOI,文献DOI怎么找? 2008339
邀请新用户注册赠送积分活动 1043928
科研通“疑难数据库(出版商)”最低求助积分说明 932532