AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification

卷积神经网络 计算机科学 高光谱成像 人工智能 特征提取 模式识别(心理学) 深度学习 上下文图像分类 特征(语言学) 人工神经网络 机器学习 图像(数学) 语言学 哲学
作者
Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Yu Xue,Juan M. Haut,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:38
标识
DOI:10.1109/tgrs.2023.3272639
摘要

Convolutional models have provided outstanding performance in the analysis of hyperspectral images (HSIs). These architectures are carefully designed to extract intricate information from non-linear features for classification tasks. Notwithstanding their results, model architectures are manually engineered and further optimized for generalized feature extraction. In general terms, deep architectures are time consuming for complex scenarios since they require fine tuning. Neural architecture search (NAS) has emerged as a suitable approach to tackle this shortcoming. In parallel, modern attention-based methods have boosted the recognition of sophisticated features. The search for optimal neural architectures combined with attention procedures motivates the development of this work. This paper develops a new method to automatically design and optimize convolutional neural networks (CNNs) for HSI classification using channel-based attention mechanisms. Specifically, one-dimensional (1D) and spectral-spatial (3D) classifiers are considered to handle the large amount of information contained in HSIs from different perspectives. Furthermore, the proposed AAtt-CNN method meets the requirement to lower the large computational overheads associated with architectural search. It is compared with current state-of-the-art (SOTA) classifiers. Our experiments, conducted using a wide range of HSI images, demonstrate that AAtt-CNN succeeds in finding optimal architectures for classification, leading to SOTA results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助北极星采纳,获得10
刚刚
bkagyin应助jjjjjjj采纳,获得10
刚刚
席茹妖完成签到,获得积分10
刚刚
万能图书馆应助小辛采纳,获得10
1秒前
1秒前
1秒前
负责的皮卡丘应助麦子采纳,获得10
1秒前
2秒前
科研通AI6应助淡定的以寒采纳,获得10
4秒前
4秒前
4秒前
告元完成签到,获得积分10
4秒前
BTW发布了新的文献求助10
5秒前
5秒前
mang完成签到 ,获得积分10
5秒前
guo发布了新的文献求助10
5秒前
5秒前
6秒前
科目三应助拼搏的帆布鞋采纳,获得10
6秒前
小灰灰完成签到,获得积分10
7秒前
汉堡包应助小奇采纳,获得10
7秒前
7秒前
7秒前
8秒前
Lamis完成签到 ,获得积分10
8秒前
tgoutgou完成签到,获得积分10
9秒前
9秒前
min发布了新的文献求助10
9秒前
小灰灰发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
无奈夏瑶发布了新的文献求助10
12秒前
12秒前
13秒前
mds发布了新的文献求助10
14秒前
peanut完成签到,获得积分10
16秒前
16秒前
punch发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420251
求助须知:如何正确求助?哪些是违规求助? 4535385
关于积分的说明 14149881
捐赠科研通 4452462
什么是DOI,文献DOI怎么找? 2442152
邀请新用户注册赠送积分活动 1433648
关于科研通互助平台的介绍 1410945