AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification

卷积神经网络 计算机科学 高光谱成像 人工智能 特征提取 模式识别(心理学) 深度学习 上下文图像分类 特征(语言学) 人工神经网络 机器学习 图像(数学) 语言学 哲学
作者
Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Yu Xue,Juan M. Haut,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:8
标识
DOI:10.1109/tgrs.2023.3272639
摘要

Convolutional models have provided outstanding performance in the analysis of hyperspectral images (HSIs). These architectures are carefully designed to extract intricate information from non-linear features for classification tasks. Notwithstanding their results, model architectures are manually engineered and further optimized for generalized feature extraction. In general terms, deep architectures are time consuming for complex scenarios since they require fine tuning. Neural architecture search (NAS) has emerged as a suitable approach to tackle this shortcoming. In parallel, modern attention-based methods have boosted the recognition of sophisticated features. The search for optimal neural architectures combined with attention procedures motivates the development of this work. This paper develops a new method to automatically design and optimize convolutional neural networks (CNNs) for HSI classification using channel-based attention mechanisms. Specifically, one-dimensional (1D) and spectral-spatial (3D) classifiers are considered to handle the large amount of information contained in HSIs from different perspectives. Furthermore, the proposed AAtt-CNN method meets the requirement to lower the large computational overheads associated with architectural search. It is compared with current state-of-the-art (SOTA) classifiers. Our experiments, conducted using a wide range of HSI images, demonstrate that AAtt-CNN succeeds in finding optimal architectures for classification, leading to SOTA results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
wanwan应助1177采纳,获得10
3秒前
丘比特应助LaFee采纳,获得10
3秒前
ABJ完成签到 ,获得积分10
3秒前
椿人发布了新的文献求助10
4秒前
上官若男应助LWJ采纳,获得10
4秒前
十有八九完成签到,获得积分10
4秒前
樊孟完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
7秒前
SHAO应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
苗条发箍完成签到 ,获得积分20
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Bio应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
小花排草完成签到,获得积分10
8秒前
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439