Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection

计算机科学 稳健性(进化) 人工智能 目标检测 特征提取 像素 特征(语言学) 计算机视觉 支持向量机 残余物 模式识别(心理学) 算法 生物化学 化学 语言学 哲学 基因
作者
Hai Xu,Sheng Zhong,Tianxu Zhang,Xu Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:21
标识
DOI:10.1109/tgrs.2023.3269092
摘要

Detecting infrared dim and small targets is one crucial step for many tasks such as early warning. It remains a continuing challenge since characteristics of infrared small targets, usually represented by only a few pixels, are generally not salient. Despite that many traditional methods have significantly advanced the community, their robustness or efficiency is still lacking. Most recently, CNN-based object detection has achieved remarkable performance and some researchers focus on it. However, these methods are not computationally efficient when implemented on some CPU-only machines and few datasets are available publicly. To promote the detection of infrared small targets in complex backgrounds, we propose a new lightweight CNN-based architecture. The network contains three modules: the feature extraction module is designed for representing multi-scale and multi-level features, the grid resample operation module is proposed to fuse features from all scales, and a decoupled head to distinguish infrared small targets from backgrounds. Moreover, we collect a brand-new infrared small target detection dedicated dataset which consists of 68311 practical captured images with complex backgrounds for alleviating the data dilemma. To validate the proposed model, 54758 images are used for training and 13553 images are used for testing respectively. Extensive experimental results demonstrate that the proposed method outperforms all traditional methods by a large margin and runs much faster than other CNN methods with high precision. The proposed model can be implemented on the Intel i7-10850H CPU (2.3GHz) platform and Jetson Nano for real-time infrared small target detection at 44 FPS and 27 FPS, respectively. It can be even deployed on an Atom x5-Z8500 (1.44GHz) machine at about 25 FPS with 128×128 local images. The source codes and the dataset have been made publicly available at https://github.com/SeaHifly/Infrared-Small-Target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婉腾完成签到,获得积分10
刚刚
1秒前
逗逗完成签到,获得积分10
2秒前
now发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
xzy998发布了新的文献求助30
3秒前
王航完成签到,获得积分10
3秒前
3秒前
4秒前
史书完成签到,获得积分10
4秒前
golden发布了新的文献求助10
5秒前
5秒前
虚幻沛菡发布了新的文献求助10
6秒前
trans发布了新的文献求助20
6秒前
小木子发布了新的文献求助10
7秒前
7秒前
彪壮的草莓关注了科研通微信公众号
8秒前
Hanna0223关注了科研通微信公众号
8秒前
lione完成签到,获得积分10
9秒前
念初发布了新的文献求助10
9秒前
9秒前
ZhijunXiang发布了新的文献求助30
11秒前
12秒前
12秒前
鲸鱼发布了新的文献求助10
12秒前
丛玉林完成签到,获得积分10
13秒前
科研通AI6应助SEANFLY采纳,获得10
13秒前
科研通AI5应助于大本事采纳,获得10
13秒前
爬不起来发布了新的文献求助10
13秒前
ab完成签到,获得积分10
13秒前
14秒前
Orange应助wb采纳,获得10
14秒前
14秒前
万能图书馆应助xun采纳,获得30
14秒前
大个应助林周采纳,获得10
14秒前
小哈发布了新的文献求助10
14秒前
Iq完成签到,获得积分10
15秒前
嘟嘟完成签到,获得积分10
15秒前
云康肖完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835