Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection

计算机科学 稳健性(进化) 人工智能 目标检测 特征提取 像素 特征(语言学) 计算机视觉 支持向量机 残余物 模式识别(心理学) 算法 生物化学 化学 语言学 哲学 基因
作者
Hai Xu,Sheng Zhong,Tianxu Zhang,Xu Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:34
标识
DOI:10.1109/tgrs.2023.3269092
摘要

Detecting infrared dim and small targets is one crucial step for many tasks such as early warning. It remains a continuing challenge since characteristics of infrared small targets, usually represented by only a few pixels, are generally not salient. Despite that many traditional methods have significantly advanced the community, their robustness or efficiency is still lacking. Most recently, CNN-based object detection has achieved remarkable performance and some researchers focus on it. However, these methods are not computationally efficient when implemented on some CPU-only machines and few datasets are available publicly. To promote the detection of infrared small targets in complex backgrounds, we propose a new lightweight CNN-based architecture. The network contains three modules: the feature extraction module is designed for representing multi-scale and multi-level features, the grid resample operation module is proposed to fuse features from all scales, and a decoupled head to distinguish infrared small targets from backgrounds. Moreover, we collect a brand-new infrared small target detection dedicated dataset which consists of 68311 practical captured images with complex backgrounds for alleviating the data dilemma. To validate the proposed model, 54758 images are used for training and 13553 images are used for testing respectively. Extensive experimental results demonstrate that the proposed method outperforms all traditional methods by a large margin and runs much faster than other CNN methods with high precision. The proposed model can be implemented on the Intel i7-10850H CPU (2.3GHz) platform and Jetson Nano for real-time infrared small target detection at 44 FPS and 27 FPS, respectively. It can be even deployed on an Atom x5-Z8500 (1.44GHz) machine at about 25 FPS with 128×128 local images. The source codes and the dataset have been made publicly available at https://github.com/SeaHifly/Infrared-Small-Target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
村长热爱美丽完成签到 ,获得积分10
刚刚
干干发布了新的文献求助10
刚刚
lizhiqian2024完成签到,获得积分10
1秒前
早日毕业完成签到 ,获得积分10
1秒前
LSHS发布了新的文献求助10
1秒前
DIAPTERA完成签到,获得积分10
2秒前
qiuer7应助Augustines采纳,获得10
2秒前
忐忑的远山完成签到,获得积分10
2秒前
溪鱼发布了新的文献求助20
3秒前
4秒前
Orange应助笨笨的仙人掌采纳,获得10
4秒前
可爱项链完成签到,获得积分10
4秒前
WUWU2435完成签到,获得积分10
5秒前
aaa发布了新的文献求助10
5秒前
5秒前
充电宝应助Allein采纳,获得10
5秒前
慕青应助NXK采纳,获得10
5秒前
仁爱亦巧完成签到 ,获得积分10
6秒前
完美世界应助文具盒采纳,获得10
6秒前
哎呀我去发布了新的文献求助10
6秒前
远山完成签到,获得积分10
7秒前
未来学术司马懿完成签到,获得积分0
7秒前
无辜的醉波完成签到,获得积分10
7秒前
mingjie完成签到,获得积分10
7秒前
科研通AI6应助andy采纳,获得10
7秒前
8秒前
weiye1992完成签到,获得积分10
8秒前
高挑的若雁完成签到 ,获得积分10
9秒前
9秒前
qqq完成签到 ,获得积分10
9秒前
9秒前
Owen应助aaa采纳,获得10
10秒前
西园寺鹿旎完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
雪雪啊发布了新的文献求助10
12秒前
坚定的问梅完成签到,获得积分10
12秒前
现代的烤鸡完成签到,获得积分10
12秒前
13秒前
liu完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413904
求助须知:如何正确求助?哪些是违规求助? 4530767
关于积分的说明 14125053
捐赠科研通 4446058
什么是DOI,文献DOI怎么找? 2439334
邀请新用户注册赠送积分活动 1431442
关于科研通互助平台的介绍 1409123