Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection

计算机科学 稳健性(进化) 人工智能 目标检测 特征提取 像素 特征(语言学) 计算机视觉 支持向量机 残余物 模式识别(心理学) 算法 生物化学 化学 语言学 哲学 基因
作者
Hai Xu,Sheng Zhong,Tianxu Zhang,Xu Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:34
标识
DOI:10.1109/tgrs.2023.3269092
摘要

Detecting infrared dim and small targets is one crucial step for many tasks such as early warning. It remains a continuing challenge since characteristics of infrared small targets, usually represented by only a few pixels, are generally not salient. Despite that many traditional methods have significantly advanced the community, their robustness or efficiency is still lacking. Most recently, CNN-based object detection has achieved remarkable performance and some researchers focus on it. However, these methods are not computationally efficient when implemented on some CPU-only machines and few datasets are available publicly. To promote the detection of infrared small targets in complex backgrounds, we propose a new lightweight CNN-based architecture. The network contains three modules: the feature extraction module is designed for representing multi-scale and multi-level features, the grid resample operation module is proposed to fuse features from all scales, and a decoupled head to distinguish infrared small targets from backgrounds. Moreover, we collect a brand-new infrared small target detection dedicated dataset which consists of 68311 practical captured images with complex backgrounds for alleviating the data dilemma. To validate the proposed model, 54758 images are used for training and 13553 images are used for testing respectively. Extensive experimental results demonstrate that the proposed method outperforms all traditional methods by a large margin and runs much faster than other CNN methods with high precision. The proposed model can be implemented on the Intel i7-10850H CPU (2.3GHz) platform and Jetson Nano for real-time infrared small target detection at 44 FPS and 27 FPS, respectively. It can be even deployed on an Atom x5-Z8500 (1.44GHz) machine at about 25 FPS with 128×128 local images. The source codes and the dataset have been made publicly available at https://github.com/SeaHifly/Infrared-Small-Target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小余同学发布了新的文献求助10
刚刚
ice发布了新的文献求助10
刚刚
刚刚
刚刚
脑洞疼应助roshan采纳,获得10
1秒前
1秒前
赵惨惨发布了新的文献求助10
1秒前
鱼鱼应助傲娇的凡白采纳,获得10
1秒前
2秒前
2秒前
2秒前
下克斯完成签到,获得积分10
2秒前
小蘑菇应助winwin采纳,获得10
2秒前
asdf发布了新的文献求助10
3秒前
4秒前
4秒前
yvette完成签到,获得积分10
4秒前
4秒前
dsfsd发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
yangyangzijiajia完成签到,获得积分10
6秒前
Brain完成签到,获得积分10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Chenkun发布了新的文献求助20
8秒前
祁鹤发布了新的文献求助10
8秒前
9秒前
东山完成签到 ,获得积分10
9秒前
华仔应助ice采纳,获得10
10秒前
温柔傲安完成签到,获得积分10
10秒前
王京华发布了新的文献求助10
10秒前
单薄的枕头关注了科研通微信公众号
10秒前
10秒前
王树茂发布了新的文献求助10
11秒前
嘿嘿发布了新的文献求助10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
yvette发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502