Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection

计算机科学 稳健性(进化) 人工智能 目标检测 特征提取 像素 特征(语言学) 计算机视觉 支持向量机 残余物 模式识别(心理学) 算法 哲学 基因 生物化学 化学 语言学
作者
Hai Xu,Sheng Zhong,Tianxu Zhang,Xu Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:21
标识
DOI:10.1109/tgrs.2023.3269092
摘要

Detecting infrared dim and small targets is one crucial step for many tasks such as early warning. It remains a continuing challenge since characteristics of infrared small targets, usually represented by only a few pixels, are generally not salient. Despite that many traditional methods have significantly advanced the community, their robustness or efficiency is still lacking. Most recently, CNN-based object detection has achieved remarkable performance and some researchers focus on it. However, these methods are not computationally efficient when implemented on some CPU-only machines and few datasets are available publicly. To promote the detection of infrared small targets in complex backgrounds, we propose a new lightweight CNN-based architecture. The network contains three modules: the feature extraction module is designed for representing multi-scale and multi-level features, the grid resample operation module is proposed to fuse features from all scales, and a decoupled head to distinguish infrared small targets from backgrounds. Moreover, we collect a brand-new infrared small target detection dedicated dataset which consists of 68311 practical captured images with complex backgrounds for alleviating the data dilemma. To validate the proposed model, 54758 images are used for training and 13553 images are used for testing respectively. Extensive experimental results demonstrate that the proposed method outperforms all traditional methods by a large margin and runs much faster than other CNN methods with high precision. The proposed model can be implemented on the Intel i7-10850H CPU (2.3GHz) platform and Jetson Nano for real-time infrared small target detection at 44 FPS and 27 FPS, respectively. It can be even deployed on an Atom x5-Z8500 (1.44GHz) machine at about 25 FPS with 128×128 local images. The source codes and the dataset have been made publicly available at https://github.com/SeaHifly/Infrared-Small-Target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助逍遥采纳,获得200
刚刚
小马甲应助缓慢代亦采纳,获得10
刚刚
感动白风发布了新的文献求助10
2秒前
阿刁发布了新的文献求助10
3秒前
lm18994782585完成签到,获得积分20
3秒前
滴答发布了新的文献求助10
3秒前
4秒前
小马甲应助猪猪hero采纳,获得10
6秒前
心空完成签到,获得积分10
7秒前
阿刁完成签到,获得积分10
8秒前
刻苦羽毛完成签到,获得积分10
8秒前
共享精神应助LWJ采纳,获得10
8秒前
9秒前
10秒前
小乐应助林白同学采纳,获得10
10秒前
Dr_Zhao完成签到,获得积分20
10秒前
Haley完成签到 ,获得积分0
11秒前
半糖完成签到 ,获得积分10
11秒前
11秒前
11秒前
大模型应助Hommand_藏山采纳,获得10
11秒前
ll完成签到 ,获得积分10
11秒前
12秒前
Aurora.H完成签到,获得积分10
12秒前
cherry发布了新的文献求助10
12秒前
12秒前
小西发布了新的文献求助30
13秒前
13秒前
16秒前
1111发布了新的文献求助30
16秒前
17秒前
万能图书馆应助苏小喵采纳,获得10
17秒前
lu发布了新的文献求助10
17秒前
科研通AI5应助ylq采纳,获得10
17秒前
泡泡茶壶o完成签到 ,获得积分10
19秒前
20秒前
21秒前
22秒前
22秒前
朴实的映秋完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439