Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection

计算机科学 稳健性(进化) 人工智能 目标检测 特征提取 像素 特征(语言学) 计算机视觉 残余物 模式识别(心理学) 算法 语言学 生物化学 基因 哲学 化学
作者
Hai Xu,Sheng Zhong,Tianxu Zhang,Xu Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:7
标识
DOI:10.1109/tgrs.2023.3269092
摘要

Detecting infrared dim and small targets is one crucial step for many tasks such as early warning. It remains a continuing challenge since characteristics of infrared small targets, usually represented by only a few pixels, are generally not salient. Despite that many traditional methods have significantly advanced the community, their robustness or efficiency is still lacking. Most recently, CNN-based object detection has achieved remarkable performance and some researchers focus on it. However, these methods are not computationally efficient when implemented on some CPU-only machines and few datasets are available publicly. To promote the detection of infrared small targets in complex backgrounds, we propose a new lightweight CNN-based architecture. The network contains three modules: the feature extraction module is designed for representing multi-scale and multi-level features, the grid resample operation module is proposed to fuse features from all scales, and a decoupled head to distinguish infrared small targets from backgrounds. Moreover, we collect a brand-new infrared small target detection dedicated dataset which consists of 68311 practical captured images with complex backgrounds for alleviating the data dilemma. To validate the proposed model, 54758 images are used for training and 13553 images are used for testing respectively. Extensive experimental results demonstrate that the proposed method outperforms all traditional methods by a large margin and runs much faster than other CNN methods with high precision. The proposed model can be implemented on the Intel i7-10850H CPU (2.3GHz) platform and Jetson Nano for real-time infrared small target detection at 44 FPS and 27 FPS, respectively. It can be even deployed on an Atom x5-Z8500 (1.44GHz) machine at about 25 FPS with 128×128 local images. The source codes and the dataset have been made publicly available at https://github.com/SeaHifly/Infrared-Small-Target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的松鼠鼠完成签到,获得积分20
刚刚
阿普修完成签到,获得积分10
1秒前
美丽觅夏完成签到 ,获得积分10
2秒前
2秒前
朴实雅柔完成签到,获得积分10
3秒前
4秒前
丶Dawn完成签到,获得积分0
4秒前
4秒前
爆米花应助wang采纳,获得10
6秒前
wang完成签到,获得积分20
7秒前
8秒前
9秒前
12秒前
12秒前
chenc发布了新的文献求助20
13秒前
香蕉觅云应助阿鑫采纳,获得10
14秒前
Flora322完成签到,获得积分10
17秒前
18秒前
淡淡的以冬完成签到 ,获得积分10
18秒前
wen发布了新的文献求助10
18秒前
18秒前
wang发布了新的文献求助10
21秒前
21秒前
xyl完成签到 ,获得积分10
21秒前
23秒前
23秒前
小可爱完成签到,获得积分10
28秒前
chendapai发布了新的文献求助10
28秒前
诚心的安珊完成签到 ,获得积分10
29秒前
云宝发布了新的文献求助10
29秒前
dentistjh完成签到,获得积分0
30秒前
30秒前
cipher完成签到 ,获得积分10
31秒前
科研通AI2S应助小橘采纳,获得10
32秒前
赘婿应助背后的松鼠鼠采纳,获得10
33秒前
画船听雨眠完成签到 ,获得积分10
34秒前
赘婿应助wen采纳,获得10
35秒前
天天快乐应助马上毕业采纳,获得10
36秒前
Qiuqiu发布了新的文献求助10
36秒前
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242704
求助须知:如何正确求助?哪些是违规求助? 2886962
关于积分的说明 8245419
捐赠科研通 2555512
什么是DOI,文献DOI怎么找? 1383601
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625605