Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection

计算机科学 稳健性(进化) 人工智能 目标检测 特征提取 像素 特征(语言学) 计算机视觉 支持向量机 残余物 模式识别(心理学) 算法 生物化学 化学 语言学 哲学 基因
作者
Hai Xu,Sheng Zhong,Tianxu Zhang,Xu Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:34
标识
DOI:10.1109/tgrs.2023.3269092
摘要

Detecting infrared dim and small targets is one crucial step for many tasks such as early warning. It remains a continuing challenge since characteristics of infrared small targets, usually represented by only a few pixels, are generally not salient. Despite that many traditional methods have significantly advanced the community, their robustness or efficiency is still lacking. Most recently, CNN-based object detection has achieved remarkable performance and some researchers focus on it. However, these methods are not computationally efficient when implemented on some CPU-only machines and few datasets are available publicly. To promote the detection of infrared small targets in complex backgrounds, we propose a new lightweight CNN-based architecture. The network contains three modules: the feature extraction module is designed for representing multi-scale and multi-level features, the grid resample operation module is proposed to fuse features from all scales, and a decoupled head to distinguish infrared small targets from backgrounds. Moreover, we collect a brand-new infrared small target detection dedicated dataset which consists of 68311 practical captured images with complex backgrounds for alleviating the data dilemma. To validate the proposed model, 54758 images are used for training and 13553 images are used for testing respectively. Extensive experimental results demonstrate that the proposed method outperforms all traditional methods by a large margin and runs much faster than other CNN methods with high precision. The proposed model can be implemented on the Intel i7-10850H CPU (2.3GHz) platform and Jetson Nano for real-time infrared small target detection at 44 FPS and 27 FPS, respectively. It can be even deployed on an Atom x5-Z8500 (1.44GHz) machine at about 25 FPS with 128×128 local images. The source codes and the dataset have been made publicly available at https://github.com/SeaHifly/Infrared-Small-Target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的怀莲完成签到,获得积分10
刚刚
han发布了新的文献求助10
1秒前
2秒前
2秒前
英姑应助复杂的凤妖采纳,获得10
3秒前
3秒前
3秒前
怡然灵薇发布了新的文献求助10
5秒前
情怀应助被窝哲学家采纳,获得10
5秒前
zz发布了新的文献求助10
6秒前
weizhao发布了新的文献求助10
6秒前
6秒前
天赐殊荣完成签到,获得积分10
8秒前
wwy应助嗯嗯采纳,获得10
8秒前
椰汁发布了新的文献求助10
8秒前
fuchao发布了新的文献求助10
9秒前
小橙子llc发布了新的文献求助10
9秒前
smottom应助wang采纳,获得10
10秒前
www发布了新的文献求助30
10秒前
小二郎应助weizhao采纳,获得10
10秒前
中将完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
13秒前
朴素的愫完成签到 ,获得积分10
13秒前
未央完成签到,获得积分10
14秒前
万能图书馆应助xuan采纳,获得10
14秒前
14秒前
15秒前
16秒前
16秒前
16秒前
17秒前
Lucas应助zm采纳,获得10
19秒前
19秒前
浩浩完成签到,获得积分20
20秒前
20秒前
20秒前
21秒前
汉堡包应助pinecone采纳,获得30
21秒前
21秒前
小丸子发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637107
求助须知:如何正确求助?哪些是违规求助? 4742700
关于积分的说明 14997714
捐赠科研通 4795341
什么是DOI,文献DOI怎么找? 2561924
邀请新用户注册赠送积分活动 1521429
关于科研通互助平台的介绍 1481505