Whole‐body tumor segmentation from PET/CT images using a two‐stage cascaded neural network with camouflaged object detection mechanisms

分割 肺癌 人工智能 计算机科学 图像分割 阶段(地层学) 核医学 模式识别(心理学) 医学 病理 生物 古生物学
作者
Jiangping He,Yanjie Zhang,Maggie Chung,J. Warchol,Kun Wang,Wei Wang,Xiaoyang Ding,Qiang Li,Yonglin Pu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6151-6162 被引量:4
标识
DOI:10.1002/mp.16438
摘要

Whole-body Metabolic Tumor Volume (MTVwb) is an independent prognostic factor for overall survival in lung cancer patients. Automatic segmentation methods have been proposed for MTV calculation. Nevertheless, most of existing methods for patients with lung cancer only segment tumors in the thoracic region.In this paper, we present a Two-Stage cascaded neural network integrated with Camouflaged Object Detection mEchanisms (TS-Code-Net) for automatic segmenting tumors from whole-body PET/CT images.Firstly, tumors are detected from the Maximum Intensity Projection (MIP) images of PET/CT scans, and tumors' approximate localizations along z-axis are identified. Secondly, the segmentations are performed on PET/CT slices that contain tumors identified by the first step. Camouflaged object detection mechanisms are utilized to distinguish the tumors from their surrounding regions that have similar Standard Uptake Values (SUV) and texture appearance. Finally, the TS-Code-Net is trained by minimizing the total loss that incorporates the segmentation accuracy loss and the class imbalance loss.The performance of the TS-Code-Net is tested on a whole-body PET/CT image data-set including 480 Non-Small Cell Lung Cancer (NSCLC) patients with five-fold cross-validation using image segmentation metrics. Our method achieves 0.70, 0.76, and 0.70, for Dice, Sensitivity and Precision, respectively, which demonstrates the superiority of the TS-Code-Net over several existing methods related to metastatic lung cancer segmentation from whole-body PET/CT images.The proposed TS-Code-Net is effective for whole-body tumor segmentation of PET/CT images. Codes for TS-Code-Net are available at: https://github.com/zyj19/TS-Code-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助飘逸蘑菇采纳,获得10
刚刚
科研通AI2S应助cc采纳,获得10
1秒前
1秒前
1秒前
spray完成签到,获得积分10
2秒前
范范完成签到,获得积分20
2秒前
少年发布了新的文献求助10
2秒前
大力鱼发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
shilong.yang完成签到,获得积分10
4秒前
jy发布了新的文献求助10
5秒前
6秒前
6秒前
梦里发布了新的文献求助10
7秒前
falcon完成签到 ,获得积分10
8秒前
劈里啪啦发布了新的文献求助10
9秒前
耿强发布了新的文献求助10
9秒前
科研通AI5应助坚强的樱采纳,获得10
9秒前
陈杰发布了新的文献求助10
9秒前
nozero完成签到,获得积分10
11秒前
澜生发布了新的文献求助10
12秒前
在水一方应助惠惠采纳,获得10
12秒前
852应助zZ采纳,获得10
12秒前
小马甲应助陌路采纳,获得10
13秒前
1335804518完成签到 ,获得积分10
14秒前
14秒前
甜甜醉波完成签到,获得积分10
14秒前
科研通AI2S应助卷卷王采纳,获得10
15秒前
可爱的函函应助梦里采纳,获得10
15秒前
沐晴完成签到,获得积分10
16秒前
入夏完成签到,获得积分10
16秒前
16秒前
16秒前
苏州小北发布了新的文献求助10
17秒前
17秒前
snail完成签到,获得积分10
18秒前
劈里啪啦完成签到,获得积分10
18秒前
wanci应助Jasmine采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794