Incorporating multi-stage spatial visual cues and active localization offset for pancreas segmentation

计算机科学 分割 人工智能 偏移量(计算机科学) 像素 计算机视觉 卷积神经网络 新颖性 模式识别(心理学) 神学 哲学 程序设计语言
作者
Jianguo Ju,Jiaming Li,Zhengqi Chang,Ying Liu,Ziyu Guan,Ping Xu,Fei Xie,Hexu Wang
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:170: 85-92 被引量:3
标识
DOI:10.1016/j.patrec.2023.05.004
摘要

Accurately segmenting pancreas or pancreatic tumor from limited computed tomography (CT) scans plays an essential role in making a precise diagnosis and planning the surgical procedure for clinicians. Although deep convolutional neural networks (DCNNs) have greatly advanced in automatic organ segmentation, there are still many challenges in solving the pancreas segmentation problem with small region and complex background. Many researchers have developed a coarse-to-fine scheme, which employ prediction from the coarse stage as a smaller input region for the fine stage. Despite this scheme effectiveness, most existing approaches handle two stages individually, and fail to identify the reliability of coarse stage predictions. In this work, we present a novel coarse-to-fine framework based on spatial contextual cues and active localization offset. The novelty lies in carefully designed two modules: Spacial Visual Cues Fusion (SVCF) and Active Localization OffseT (ALOT). The SVCF combines the correlations between all pixels in an image to optimize the rough and uncertain pixel prediction at the coarse stage, while ALOT dynamically adjusts the localization as the coarse stage iteration. These two modules work together to optimize the coarse stage results and provide high-quality input for the fine stage, thereby achieving inspiring target segmentation. Empirical results on NIH pancreas segmentation and MSD pancreatic tumor segmentation dataset show that our framework yields state-of-the-art results. The code will make available at https://github.com/PinkGhost0812/SANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助个性的友蕊采纳,获得10
1秒前
酷酷友容应助bb采纳,获得30
1秒前
慕青应助Evill采纳,获得10
2秒前
程瑞哲完成签到,获得积分10
2秒前
活力依云发布了新的文献求助10
2秒前
香蕉觅云应助任性的冷梅采纳,获得10
3秒前
加菲宝宝完成签到,获得积分20
4秒前
纯情的傲儿完成签到,获得积分20
5秒前
小马甲应助ljssll采纳,获得10
6秒前
由不尤发布了新的文献求助10
6秒前
6秒前
热切菩萨应助dl采纳,获得10
7秒前
28256发布了新的文献求助10
7秒前
8秒前
久别完成签到,获得积分10
9秒前
李健的粉丝团团长应助May采纳,获得10
9秒前
青青子衿发布了新的文献求助10
9秒前
10秒前
11秒前
模糊中正应助GJH采纳,获得30
12秒前
可爱的函函应助llx采纳,获得200
14秒前
开心的半仙完成签到 ,获得积分10
16秒前
18秒前
NexusExplorer应助smile采纳,获得10
20秒前
22秒前
奥雷里亚诺完成签到 ,获得积分10
23秒前
23秒前
俊逸湘完成签到,获得积分10
24秒前
充电宝应助由不尤采纳,获得10
27秒前
温凊完成签到 ,获得积分10
27秒前
单细胞测序完成签到,获得积分10
28秒前
30秒前
bkagyin应助kevin采纳,获得10
30秒前
Godlike完成签到,获得积分10
31秒前
爆米花应助平淡南霜采纳,获得10
33秒前
Yey完成签到,获得积分10
34秒前
34秒前
Godlike发布了新的文献求助10
35秒前
爆米花应助无奈柚子采纳,获得10
36秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464579
求助须知:如何正确求助?哪些是违规求助? 3057991
关于积分的说明 9059220
捐赠科研通 2748097
什么是DOI,文献DOI怎么找? 1507732
科研通“疑难数据库(出版商)”最低求助积分说明 696664
邀请新用户注册赠送积分活动 696296