Incorporating multi-stage spatial visual cues and active localization offset for pancreas segmentation

计算机科学 分割 人工智能 偏移量(计算机科学) 像素 计算机视觉 卷积神经网络 新颖性 模式识别(心理学) 神学 哲学 程序设计语言
作者
Jianguo Ju,Jiaming Li,Zhengqi Chang,Ying Liu,Ziyu Guan,Ping Xu,Fei Xie,Hexu Wang
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:170: 85-92 被引量:3
标识
DOI:10.1016/j.patrec.2023.05.004
摘要

Accurately segmenting pancreas or pancreatic tumor from limited computed tomography (CT) scans plays an essential role in making a precise diagnosis and planning the surgical procedure for clinicians. Although deep convolutional neural networks (DCNNs) have greatly advanced in automatic organ segmentation, there are still many challenges in solving the pancreas segmentation problem with small region and complex background. Many researchers have developed a coarse-to-fine scheme, which employ prediction from the coarse stage as a smaller input region for the fine stage. Despite this scheme effectiveness, most existing approaches handle two stages individually, and fail to identify the reliability of coarse stage predictions. In this work, we present a novel coarse-to-fine framework based on spatial contextual cues and active localization offset. The novelty lies in carefully designed two modules: Spacial Visual Cues Fusion (SVCF) and Active Localization OffseT (ALOT). The SVCF combines the correlations between all pixels in an image to optimize the rough and uncertain pixel prediction at the coarse stage, while ALOT dynamically adjusts the localization as the coarse stage iteration. These two modules work together to optimize the coarse stage results and provide high-quality input for the fine stage, thereby achieving inspiring target segmentation. Empirical results on NIH pancreas segmentation and MSD pancreatic tumor segmentation dataset show that our framework yields state-of-the-art results. The code will make available at https://github.com/PinkGhost0812/SANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助小晨采纳,获得10
1秒前
kkk发布了新的文献求助10
1秒前
小鱼完成签到,获得积分10
1秒前
carmac完成签到,获得积分10
2秒前
Ccc发布了新的文献求助10
2秒前
3秒前
跳跃的襄发布了新的文献求助10
3秒前
3秒前
3秒前
joshua完成签到,获得积分10
4秒前
任驰骋发布了新的文献求助10
5秒前
5秒前
搞怪莫茗完成签到,获得积分10
5秒前
6秒前
7秒前
十里长亭发布了新的文献求助10
7秒前
明明就完成签到,获得积分20
7秒前
Chris发布了新的文献求助10
7秒前
ohyeah8888应助浮生采纳,获得100
8秒前
唐新惠发布了新的文献求助10
8秒前
dava应助aprilvanilla采纳,获得10
8秒前
9秒前
9秒前
赘婿应助片刻采纳,获得10
9秒前
烟花应助diraczh采纳,获得10
10秒前
晴乐令发布了新的文献求助10
10秒前
结实的导师完成签到,获得积分20
10秒前
10秒前
小蘑菇应助vivia采纳,获得10
10秒前
11秒前
11秒前
搜集达人应助明明就采纳,获得30
12秒前
九湖夷上发布了新的文献求助10
12秒前
希望天下0贩的0应助popcorn采纳,获得10
12秒前
hancahngxiao发布了新的文献求助10
12秒前
hushidi发布了新的文献求助10
13秒前
大钱完成签到,获得积分20
14秒前
诸葛醉薇应助林师刚采纳,获得10
14秒前
15秒前
dengqiuxiawy发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742