Deep Isolation Forest for Anomaly Detection

计算机科学 分拆(数论) 异常检测 可扩展性 线性子空间 理论计算机科学 数据挖掘 算法 数学 几何学 组合数学 数据库
作者
Hongzuo Xu,Guansong Pang,Yijie Wang,Yongjun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (12): 12591-12604 被引量:142
标识
DOI:10.1109/tkde.2023.3270293
摘要

Isolation forest (iForest) has been emerging as arguably the most popular anomaly detector in recent years due to its general effectiveness across different benchmarks and strong scalability. Nevertheless, its linear axis-parallel isolation method often leads to (i) failure in detecting hard anomalies that are difficult to isolate in high-dimensional/non-linear-separable data space, and (ii) notorious algorithmic bias that assigns unexpectedly lower anomaly scores to artefact regions. These issues contribute to high false negative errors. Several iForest extensions are introduced, but they essentially still employ shallow, linear data partition, restricting their power in isolating true anomalies. Therefore, this paper proposes deep isolation forest. We introduce a new representation scheme that utilises casually initialised neural networks to map original data into random representation ensembles, where random axis-parallel cuts are subsequently applied to perform the data partition. This representation scheme facilitates high freedom of the partition in the original data space (equivalent to non-linear partition on subspaces of varying sizes), encouraging a unique synergy between random representations and random partition-based isolation. Extensive experiments show that our model achieves significant improvement over state-of-the-art isolation-based methods and deep detectors on tabular, graph and time series datasets; our model also inherits desired scalability from iForest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
helen发布了新的文献求助10
2秒前
yiyi037118发布了新的文献求助10
3秒前
4秒前
5秒前
研友_VZG7GZ应助小长夜采纳,获得10
6秒前
6秒前
6秒前
8秒前
宁ning发布了新的文献求助10
9秒前
10秒前
Flora完成签到,获得积分10
10秒前
烟花应助江蹇采纳,获得10
10秒前
15完成签到 ,获得积分10
11秒前
12秒前
zhj发布了新的文献求助10
13秒前
CodeCraft应助helen采纳,获得10
13秒前
研友_VZG7GZ应助nana1992004采纳,获得10
13秒前
Flora发布了新的文献求助10
13秒前
14秒前
14秒前
赤恩发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
17秒前
郑龙天完成签到,获得积分10
18秒前
Owen应助宁ning采纳,获得10
19秒前
zhj完成签到,获得积分10
19秒前
顾矜应助笑点低的丹烟采纳,获得10
19秒前
小长夜发布了新的文献求助10
20秒前
桐桐应助小竹爱科研采纳,获得10
22秒前
yosh1222完成签到,获得积分20
22秒前
zexinCHEN发布了新的文献求助10
23秒前
布洛芬完成签到,获得积分10
23秒前
26秒前
mmm发布了新的文献求助50
26秒前
西西完成签到,获得积分10
27秒前
小长夜完成签到,获得积分10
28秒前
29秒前
zs完成签到,获得积分10
29秒前
小蘑菇应助迷路的祥采纳,获得10
29秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309