三阴性乳腺癌
乳腺癌
癌症
癌症研究
基因沉默
PI3K/AKT/mTOR通路
医学
免疫组织化学
细胞凋亡
肿瘤科
内科学
生物
生物化学
基因
作者
Xudong Zhu,Jiawen Bu,Tong Zhu,Yi Jiang
标识
DOI:10.1186/s12967-023-04030-9
摘要
Abstract Background Cancer/testis antigens (CTAs) participate in the regulation of malignant biological behaviors in breast cancer. However, the function and mechanism of KK-LC-1, a member of the CTA family, in breast cancer are still unclear. Methods Bioinformatic tools, immunohistochemistry, and western blotting were utilized to detect the expression of KK-LC-1 in breast cancer and to explore the prognostic effect of KK-LC-1 expression in breast cancer patients. Cell function assays, animal assays, and next-generation sequencing were utilized to explore the function and mechanism of KK-LC-1 in the malignant biological behaviors of triple-negative breast cancer. Small molecular compounds targeting KK-LC-1 were also screened and drug susceptibility testing was performed. Results KK-LC-1 was significantly highly expressed in triple-negative breast cancer tissues than in normal breast tissues. KK-LC-1 high expression was related to poor survival outcomes in patients with breast cancer. In vitro studies suggested that KK-LC-1 silencing can inhibit triple-negative breast cancer cell proliferation, invasion, migration, and scratch healing ability, increase cell apoptosis ratio, and arrest the cell cycle in the G0–G1 phase. In vivo studies have suggested that KK-LC-1 silencing decreases tumor weight and volume in nude mice. Results showed that KK-CL-1 can regulate the malignant biological behaviors of triple-negative breast cancer via the MAL2/MUC1-C/PI3K/AKT/mTOR pathway. The small-molecule compound Z839878730 had excellent KK-LC-1 targeting ability and cancer cell killing ability. The EC 50 value was 9.7 μM for MDA-MB-231 cells and 13.67 µM for MDA-MB-468 cells. Besides, Z839878730 has little tumor-killing effect on human normal mammary epithelial cells MCF10A and can inhibit the malignant biological behaviors of triple-negative breast cancer cells by MAL2/MUC1-C/PI3K/AKT/mTOR pathway. Conclusions Our findings suggest that KK-LC-1 may serve as a novel therapeutic target for triple-negative breast cancer. Z839878730, which targets KK-LC-1, presents a new path for breast cancer clinical treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI