Deep Learning–Based Autonomous Road Condition Assessment Leveraging Inexpensive RGB and Depth Sensors and Heterogeneous Data Fusion: Pothole Detection and Quantification

RGB颜色模型 计算机科学 人工智能 传感器融合 坑洞(地质) 计算机视觉 卷积神经网络 分割 深度学习 路面 编码器 特征(语言学) 模式识别(心理学) 工程类 地质学 哲学 土木工程 操作系统 语言学 岩石学
作者
Yu‐Ting Huang,Mohammad R. Jahanshahi,Fangjia Shen,Tarutal Ghosh Mondal
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (2) 被引量:2
标识
DOI:10.1061/jpeodx.pveng-1194
摘要

Poor condition of roads is a major factor for traffic accidents and damage to vehicles. A significant portion of car accidents is attributed to severe three-dimensional (3D) pavement distresses such as potholes, ruttings, and ravelings. Insufficient road condition assessment is responsible for the poor condition of roads. To inspect the condition of the pavement surfaces more frequently and efficiently, an inexpensive data acquisition system was developed that consists of a consumer-grade RGB-D sensor and an edge computing device that can be mounted on vehicles and collect data while driving vehicles. The RGB-D sensor is used for collecting two-dimensional (2D) color images and corresponding 3D depth data, and the lightweight edge computing device is used to control the RGB-D sensor and store the collected data. An RGB-D pavement surface data set is generated. Furthermore, encoder-decoder deep convolutional neural networks (DCNNs) consisting of one or two encoders, and one decoder trained on heterogeneous RGB-D pavement surface data are used for pothole segmentation. Comprehensive experiments using different depth encoding techniques and data fusion methods including data- and feature-level fusion were performed to investigate the efficacy of defect detection using DCNNs. Experimental results demonstrate that the feature-level RGB-D data fusion based on the surface normal encoding of depth data outperform other approaches in terms of segmentation accuracy, where the mean intersection over union (IoU) over 10-fold cross-validation of 0.82 is achieved that shows a 7.7% improvement compared with a network trained only on RGB data. In addition, this study explores the efficacy of indirectly using depth information for pothole detection when depth data are not available. Additionally, the semantic segmentation results were utilized to quantify the severity level of the potholes assisting in maintenance decision-making. The result from these comprehensive experiments using an RGB-D pavement surface data set gathered through the proposed data acquisition system is a stepping stone for opportunistic data collection and processing through crowdsourcing and Internet of Things in future smart cities for effective road assessment. Finally, suggestions about the improvement of the proposed system are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逸龙完成签到,获得积分10
刚刚
buno应助单纯的雅香采纳,获得10
1秒前
xinchengzhu发布了新的文献求助10
2秒前
派大星发布了新的文献求助10
2秒前
科研通AI5应助黄紫红蓝采纳,获得10
3秒前
3秒前
3秒前
fff发布了新的文献求助10
3秒前
3秒前
4秒前
科研人发布了新的文献求助10
4秒前
4秒前
徐慕源发布了新的文献求助10
4秒前
wenwen完成签到,获得积分10
4秒前
XZZH完成签到,获得积分10
5秒前
清浅发布了新的文献求助10
5秒前
车到山前必有路女士完成签到,获得积分10
5秒前
JamesPei应助Ripples采纳,获得10
5秒前
5秒前
我是老大应助乐园采纳,获得10
6秒前
7秒前
个木发布了新的文献求助10
7秒前
谨慎不二发布了新的文献求助10
7秒前
CodeCraft应助lishunzcqty采纳,获得10
8秒前
青丝落花完成签到,获得积分10
8秒前
化学小学生完成签到,获得积分10
8秒前
9秒前
完美世界应助高高迎蓉采纳,获得10
9秒前
已拿捏催化剂完成签到 ,获得积分10
9秒前
WJM发布了新的文献求助10
9秒前
左丘忻完成签到,获得积分10
9秒前
10秒前
端庄的萝发布了新的文献求助20
10秒前
孟严青完成签到,获得积分10
10秒前
livra1058完成签到,获得积分10
10秒前
wonderting完成签到,获得积分10
10秒前
无敌小汐完成签到,获得积分10
11秒前
11秒前
圈圈发布了新的文献求助10
11秒前
EW完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678