Deep Learning–Based Autonomous Road Condition Assessment Leveraging Inexpensive RGB and Depth Sensors and Heterogeneous Data Fusion: Pothole Detection and Quantification

RGB颜色模型 计算机科学 人工智能 传感器融合 坑洞(地质) 计算机视觉 卷积神经网络 分割 深度学习 路面 编码器 特征(语言学) 模式识别(心理学) 工程类 岩石学 语言学 哲学 地质学 土木工程 操作系统
作者
Yu‐Ting Huang,Mohammad R. Jahanshahi,Fangjia Shen,Tarutal Ghosh Mondal
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (2) 被引量:2
标识
DOI:10.1061/jpeodx.pveng-1194
摘要

Poor condition of roads is a major factor for traffic accidents and damage to vehicles. A significant portion of car accidents is attributed to severe three-dimensional (3D) pavement distresses such as potholes, ruttings, and ravelings. Insufficient road condition assessment is responsible for the poor condition of roads. To inspect the condition of the pavement surfaces more frequently and efficiently, an inexpensive data acquisition system was developed that consists of a consumer-grade RGB-D sensor and an edge computing device that can be mounted on vehicles and collect data while driving vehicles. The RGB-D sensor is used for collecting two-dimensional (2D) color images and corresponding 3D depth data, and the lightweight edge computing device is used to control the RGB-D sensor and store the collected data. An RGB-D pavement surface data set is generated. Furthermore, encoder-decoder deep convolutional neural networks (DCNNs) consisting of one or two encoders, and one decoder trained on heterogeneous RGB-D pavement surface data are used for pothole segmentation. Comprehensive experiments using different depth encoding techniques and data fusion methods including data- and feature-level fusion were performed to investigate the efficacy of defect detection using DCNNs. Experimental results demonstrate that the feature-level RGB-D data fusion based on the surface normal encoding of depth data outperform other approaches in terms of segmentation accuracy, where the mean intersection over union (IoU) over 10-fold cross-validation of 0.82 is achieved that shows a 7.7% improvement compared with a network trained only on RGB data. In addition, this study explores the efficacy of indirectly using depth information for pothole detection when depth data are not available. Additionally, the semantic segmentation results were utilized to quantify the severity level of the potholes assisting in maintenance decision-making. The result from these comprehensive experiments using an RGB-D pavement surface data set gathered through the proposed data acquisition system is a stepping stone for opportunistic data collection and processing through crowdsourcing and Internet of Things in future smart cities for effective road assessment. Finally, suggestions about the improvement of the proposed system are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
IAMXC发布了新的文献求助10
3秒前
3秒前
漆玖发布了新的文献求助30
3秒前
七个娃娃发布了新的文献求助10
4秒前
4秒前
wulin314发布了新的文献求助10
5秒前
ferry123发布了新的文献求助10
5秒前
无语的凡梦完成签到,获得积分10
6秒前
隐形曼青应助仁爱的雁芙采纳,获得10
6秒前
燕燕发布了新的文献求助10
7秒前
赘婿应助诚心的若南采纳,获得10
8秒前
8秒前
8秒前
chenyinglin完成签到,获得积分10
9秒前
稳重雪冥发布了新的文献求助10
9秒前
810636174完成签到,获得积分10
9秒前
李健应助哭泣老三采纳,获得10
9秒前
我我我发布了新的文献求助10
10秒前
lvbowen发布了新的文献求助20
10秒前
木亢完成签到,获得积分10
10秒前
阿飞完成签到,获得积分10
11秒前
susan发布了新的文献求助10
12秒前
小冰棍发布了新的文献求助10
13秒前
仁爱的雁芙完成签到,获得积分10
14秒前
14秒前
YXYWZMSZ发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助宋嘉新采纳,获得10
16秒前
天真的邴完成签到 ,获得积分10
16秒前
16秒前
星空物语完成签到,获得积分10
17秒前
qhy完成签到,获得积分10
17秒前
18秒前
geold发布了新的文献求助10
19秒前
111发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655