Deep Learning–Based Autonomous Road Condition Assessment Leveraging Inexpensive RGB and Depth Sensors and Heterogeneous Data Fusion: Pothole Detection and Quantification

RGB颜色模型 计算机科学 人工智能 传感器融合 坑洞(地质) 计算机视觉 卷积神经网络 分割 深度学习 路面 编码器 特征(语言学) 模式识别(心理学) 工程类 地质学 哲学 土木工程 操作系统 语言学 岩石学
作者
Yu‐Ting Huang,Mohammad R. Jahanshahi,Fangjia Shen,Tarutal Ghosh Mondal
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (2) 被引量:19
标识
DOI:10.1061/jpeodx.pveng-1194
摘要

Poor condition of roads is a major factor for traffic accidents and damage to vehicles. A significant portion of car accidents is attributed to severe three-dimensional (3D) pavement distresses such as potholes, ruttings, and ravelings. Insufficient road condition assessment is responsible for the poor condition of roads. To inspect the condition of the pavement surfaces more frequently and efficiently, an inexpensive data acquisition system was developed that consists of a consumer-grade RGB-D sensor and an edge computing device that can be mounted on vehicles and collect data while driving vehicles. The RGB-D sensor is used for collecting two-dimensional (2D) color images and corresponding 3D depth data, and the lightweight edge computing device is used to control the RGB-D sensor and store the collected data. An RGB-D pavement surface data set is generated. Furthermore, encoder-decoder deep convolutional neural networks (DCNNs) consisting of one or two encoders, and one decoder trained on heterogeneous RGB-D pavement surface data are used for pothole segmentation. Comprehensive experiments using different depth encoding techniques and data fusion methods including data- and feature-level fusion were performed to investigate the efficacy of defect detection using DCNNs. Experimental results demonstrate that the feature-level RGB-D data fusion based on the surface normal encoding of depth data outperform other approaches in terms of segmentation accuracy, where the mean intersection over union (IoU) over 10-fold cross-validation of 0.82 is achieved that shows a 7.7% improvement compared with a network trained only on RGB data. In addition, this study explores the efficacy of indirectly using depth information for pothole detection when depth data are not available. Additionally, the semantic segmentation results were utilized to quantify the severity level of the potholes assisting in maintenance decision-making. The result from these comprehensive experiments using an RGB-D pavement surface data set gathered through the proposed data acquisition system is a stepping stone for opportunistic data collection and processing through crowdsourcing and Internet of Things in future smart cities for effective road assessment. Finally, suggestions about the improvement of the proposed system are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
3秒前
6秒前
niNe3YUE应助zhoumaoyuan采纳,获得10
8秒前
10秒前
12秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
13秒前
Jenny发布了新的文献求助10
14秒前
fzh发布了新的文献求助10
17秒前
17秒前
18秒前
21秒前
KYTYYDS发布了新的文献求助10
22秒前
HanluMa完成签到 ,获得积分10
22秒前
fzh完成签到,获得积分10
26秒前
Jenny完成签到,获得积分10
28秒前
伟立完成签到,获得积分10
28秒前
35秒前
36秒前
然12138完成签到 ,获得积分10
36秒前
香蕉觅云应助SnownS采纳,获得10
36秒前
川荣李奈完成签到 ,获得积分10
40秒前
xinbowey发布了新的文献求助10
40秒前
火星上向珊完成签到,获得积分10
43秒前
45秒前
柳条儿完成签到,获得积分10
45秒前
如意幻枫完成签到,获得积分10
49秒前
50秒前
50秒前
渔婆发布了新的文献求助10
51秒前
53秒前
风趣的泥猴桃完成签到 ,获得积分10
54秒前
54秒前
zgsjymysmyy发布了新的文献求助30
55秒前
fuchao完成签到,获得积分10
55秒前
牧谷发布了新的文献求助10
56秒前
好吃的火龙果完成签到 ,获得积分10
57秒前
天边发布了新的文献求助10
58秒前
东方越彬发布了新的文献求助10
59秒前
赘婿应助sunny采纳,获得10
59秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566