Deep Learning–Based Autonomous Road Condition Assessment Leveraging Inexpensive RGB and Depth Sensors and Heterogeneous Data Fusion: Pothole Detection and Quantification

RGB颜色模型 计算机科学 人工智能 传感器融合 坑洞(地质) 计算机视觉 卷积神经网络 分割 深度学习 路面 编码器 特征(语言学) 模式识别(心理学) 工程类 地质学 哲学 土木工程 操作系统 语言学 岩石学
作者
Yu‐Ting Huang,Mohammad R. Jahanshahi,Fangjia Shen,Tarutal Ghosh Mondal
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (2) 被引量:28
标识
DOI:10.1061/jpeodx.pveng-1194
摘要

Poor condition of roads is a major factor for traffic accidents and damage to vehicles. A significant portion of car accidents is attributed to severe three-dimensional (3D) pavement distresses such as potholes, ruttings, and ravelings. Insufficient road condition assessment is responsible for the poor condition of roads. To inspect the condition of the pavement surfaces more frequently and efficiently, an inexpensive data acquisition system was developed that consists of a consumer-grade RGB-D sensor and an edge computing device that can be mounted on vehicles and collect data while driving vehicles. The RGB-D sensor is used for collecting two-dimensional (2D) color images and corresponding 3D depth data, and the lightweight edge computing device is used to control the RGB-D sensor and store the collected data. An RGB-D pavement surface data set is generated. Furthermore, encoder-decoder deep convolutional neural networks (DCNNs) consisting of one or two encoders, and one decoder trained on heterogeneous RGB-D pavement surface data are used for pothole segmentation. Comprehensive experiments using different depth encoding techniques and data fusion methods including data- and feature-level fusion were performed to investigate the efficacy of defect detection using DCNNs. Experimental results demonstrate that the feature-level RGB-D data fusion based on the surface normal encoding of depth data outperform other approaches in terms of segmentation accuracy, where the mean intersection over union (IoU) over 10-fold cross-validation of 0.82 is achieved that shows a 7.7% improvement compared with a network trained only on RGB data. In addition, this study explores the efficacy of indirectly using depth information for pothole detection when depth data are not available. Additionally, the semantic segmentation results were utilized to quantify the severity level of the potholes assisting in maintenance decision-making. The result from these comprehensive experiments using an RGB-D pavement surface data set gathered through the proposed data acquisition system is a stepping stone for opportunistic data collection and processing through crowdsourcing and Internet of Things in future smart cities for effective road assessment. Finally, suggestions about the improvement of the proposed system are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助yang采纳,获得10
1秒前
陈康完成签到,获得积分10
1秒前
Singularity发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
gxh完成签到,获得积分10
4秒前
haoooooooooooooo应助随缘采纳,获得10
5秒前
李健应助诗图采纳,获得10
6秒前
阿晨完成签到,获得积分10
7秒前
领导范儿应助自由的元冬采纳,获得30
8秒前
9秒前
橘微青完成签到,获得积分20
10秒前
11秒前
11秒前
BowieHuang应助xsx采纳,获得10
11秒前
或无情发布了新的文献求助10
11秒前
英姑应助Xing采纳,获得10
11秒前
yaya完成签到,获得积分10
12秒前
顺利毕业发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
香蕉觅云应助冷静的孤云采纳,获得10
13秒前
13秒前
小云杉发布了新的文献求助10
16秒前
17秒前
18秒前
MET1发布了新的文献求助10
18秒前
haoooooooooooooo应助随缘采纳,获得10
18秒前
18秒前
19秒前
今后应助苗条念云采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
宋垚发布了新的文献求助10
23秒前
23秒前
tusizi2006发布了新的文献求助10
24秒前
24秒前
26秒前
26秒前
26秒前
28秒前
曾经盼易发布了新的文献求助10
29秒前
你是我的唯一完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729103
求助须知:如何正确求助?哪些是违规求助? 5316038
关于积分的说明 15315703
捐赠科研通 4876092
什么是DOI,文献DOI怎么找? 2619225
邀请新用户注册赠送积分活动 1568759
关于科研通互助平台的介绍 1525277