Classification of metastatic hepatic carcinoma and hepatocellular carcinoma lesions using contrast‐enhanced CT based on EI‐CNNet

肝细胞癌 医学 放射科 转移癌 对比度(视觉) 肝癌 计算机断层摄影术 核医学 病理 内科学 物理 光学
作者
Xuehu Wang,Li Nie,Xiaoping Yin,Li-Hong Xing,Yongchang Zheng
出处
期刊:Medical Physics [Wiley]
卷期号:50 (9): 5630-5642 被引量:4
标识
DOI:10.1002/mp.16340
摘要

Abstract Background For hepatocellular carcinoma and metastatic hepatic carcinoma, imaging is one of the main diagnostic methods. In clinical practice, diagnosis mainly relied on experienced imaging physicians, which was inefficient and cannot met the demand for rapid and accurate diagnosis. Therefore, how to efficiently and accurately classify the two types of liver cancer based on imaging is an urgent problem to be solved at present. Purpose The purpose of this study was to use the deep learning classification model to help radiologists classify the single metastatic hepatic carcinoma and hepatocellular carcinoma based on the enhanced features of enhanced CT (Computer Tomography) portal phase images of the liver site. Methods In this retrospective study, 52 patients with metastatic hepatic carcinoma and 50 patients with hepatocellular carcinoma were among the patients who underwent preoperative enhanced CT examinations from 2017–2020. A total of 565 CT slices from these patients were used to train and validate the classification network (EI‐CNNet, training/validation: 452/113). First, the EI block was used to extract edge information from CT slices to enrich fine‐grained information and classify them. Then, ROC (Receiver Operating Characteristic) curve was used to evaluate the performance, accuracy, and recall of the EI‐CNNet. Finally, the classification results of EI‐CNNet were compared with popular classification models. Results By utilizing 80% data for model training and 20% data for model validation, the average accuracy of this experiment was 98.2% ± 0.62 (mean ± standard deviation (SD)), the recall rate was 97.23% ± 2.77, the precision rate was 98.02% ± 2.07, the network parameters were 11.83 MB, and the validation time was 9.83 s/sample. The classification accuracy was improved by 20.98% compared to the base CNN network and the validation time was 10.38 s/sample. Compared with other classification networks, the InceptionV3 network showed improved classification results, but the number of parameters was increased and the validation time was 33 s/sample, and the classification accuracy was improved by 6.51% using this method. Conclusion EI‐CNNet demonstrated promised diagnostic performance and has potential to reduce the workload of radiologists and may help distinguish whether the tumor is primary or metastatic in time; otherwise, it may be missed or misjudged.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助guilin采纳,获得20
刚刚
酷波er应助Cassie采纳,获得30
刚刚
RDH完成签到,获得积分10
刚刚
mengbo完成签到,获得积分20
刚刚
无情念双完成签到,获得积分10
刚刚
时玖关注了科研通微信公众号
1秒前
酷波er应助格子采纳,获得10
1秒前
哈哈完成签到,获得积分10
2秒前
刘显波完成签到,获得积分10
5秒前
kaka091完成签到,获得积分10
5秒前
6秒前
路宝发布了新的文献求助10
6秒前
禾+完成签到,获得积分10
6秒前
7秒前
申申完成签到,获得积分10
7秒前
8秒前
qian完成签到,获得积分20
8秒前
锦鲤完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
禾+发布了新的文献求助10
10秒前
小白完成签到,获得积分20
11秒前
刘JX完成签到,获得积分10
11秒前
geold发布了新的文献求助10
13秒前
传奇3应助Mm采纳,获得10
13秒前
bkagyin应助帕尼尼采纳,获得10
14秒前
研友_VZG7GZ应助圣斗士采纳,获得10
14秒前
D1fficulty完成签到,获得积分0
14秒前
欢欢完成签到,获得积分10
14秒前
14秒前
DDDD发布了新的文献求助10
14秒前
申申发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
Cassie发布了新的文献求助30
16秒前
16秒前
QY发布了新的文献求助20
16秒前
务实老虎完成签到,获得积分10
17秒前
Orange应助刘JX采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342