Classification of metastatic hepatic carcinoma and hepatocellular carcinoma lesions using contrast‐enhanced CT based on EI‐CNNet

肝细胞癌 医学 放射科 转移癌 对比度(视觉) 肝癌 计算机断层摄影术 核医学 病理 内科学 物理 光学
作者
Xuehu Wang,Li Nie,Xiaoping Yin,Li-Hong Xing,Yongchang Zheng
出处
期刊:Medical Physics [Wiley]
卷期号:50 (9): 5630-5642 被引量:4
标识
DOI:10.1002/mp.16340
摘要

Abstract Background For hepatocellular carcinoma and metastatic hepatic carcinoma, imaging is one of the main diagnostic methods. In clinical practice, diagnosis mainly relied on experienced imaging physicians, which was inefficient and cannot met the demand for rapid and accurate diagnosis. Therefore, how to efficiently and accurately classify the two types of liver cancer based on imaging is an urgent problem to be solved at present. Purpose The purpose of this study was to use the deep learning classification model to help radiologists classify the single metastatic hepatic carcinoma and hepatocellular carcinoma based on the enhanced features of enhanced CT (Computer Tomography) portal phase images of the liver site. Methods In this retrospective study, 52 patients with metastatic hepatic carcinoma and 50 patients with hepatocellular carcinoma were among the patients who underwent preoperative enhanced CT examinations from 2017–2020. A total of 565 CT slices from these patients were used to train and validate the classification network (EI‐CNNet, training/validation: 452/113). First, the EI block was used to extract edge information from CT slices to enrich fine‐grained information and classify them. Then, ROC (Receiver Operating Characteristic) curve was used to evaluate the performance, accuracy, and recall of the EI‐CNNet. Finally, the classification results of EI‐CNNet were compared with popular classification models. Results By utilizing 80% data for model training and 20% data for model validation, the average accuracy of this experiment was 98.2% ± 0.62 (mean ± standard deviation (SD)), the recall rate was 97.23% ± 2.77, the precision rate was 98.02% ± 2.07, the network parameters were 11.83 MB, and the validation time was 9.83 s/sample. The classification accuracy was improved by 20.98% compared to the base CNN network and the validation time was 10.38 s/sample. Compared with other classification networks, the InceptionV3 network showed improved classification results, but the number of parameters was increased and the validation time was 33 s/sample, and the classification accuracy was improved by 6.51% using this method. Conclusion EI‐CNNet demonstrated promised diagnostic performance and has potential to reduce the workload of radiologists and may help distinguish whether the tumor is primary or metastatic in time; otherwise, it may be missed or misjudged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ASZXDW完成签到,获得积分10
刚刚
飞翔的小舟完成签到,获得积分20
刚刚
csa1007完成签到,获得积分10
刚刚
纷纷故事完成签到,获得积分10
1秒前
1秒前
哲999发布了新的文献求助10
1秒前
麦苳完成签到,获得积分10
1秒前
2秒前
汉堡包应助JIE采纳,获得10
2秒前
伏地魔完成签到,获得积分10
2秒前
3秒前
yyf完成签到,获得积分10
3秒前
XWT完成签到,获得积分10
3秒前
虚安完成签到 ,获得积分10
3秒前
xqy完成签到 ,获得积分10
3秒前
啵乐乐发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
momo完成签到,获得积分10
5秒前
慕青应助饕餮1235采纳,获得10
5秒前
小蘑菇应助CC采纳,获得10
6秒前
白白完成签到,获得积分10
6秒前
6秒前
6秒前
苏苏完成签到,获得积分10
7秒前
7秒前
wu完成签到,获得积分10
7秒前
7秒前
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
李健的小迷弟应助111采纳,获得10
9秒前
Accept应助wintercyan采纳,获得20
9秒前
哲999完成签到,获得积分10
9秒前
Mian完成签到,获得积分10
9秒前
10秒前
10秒前
于嗣濠完成签到 ,获得积分10
10秒前
36456657应助CC采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740