Classification of metastatic hepatic carcinoma and hepatocellular carcinoma lesions using contrast‐enhanced CT based on EI‐CNNet

肝细胞癌 医学 放射科 转移癌 对比度(视觉) 肝癌 计算机断层摄影术 核医学 病理 内科学 物理 光学
作者
Xuehu Wang,Li Nie,Xiaoping Yin,Li-Hong Xing,Yongchang Zheng
出处
期刊:Medical Physics [Wiley]
卷期号:50 (9): 5630-5642 被引量:4
标识
DOI:10.1002/mp.16340
摘要

Abstract Background For hepatocellular carcinoma and metastatic hepatic carcinoma, imaging is one of the main diagnostic methods. In clinical practice, diagnosis mainly relied on experienced imaging physicians, which was inefficient and cannot met the demand for rapid and accurate diagnosis. Therefore, how to efficiently and accurately classify the two types of liver cancer based on imaging is an urgent problem to be solved at present. Purpose The purpose of this study was to use the deep learning classification model to help radiologists classify the single metastatic hepatic carcinoma and hepatocellular carcinoma based on the enhanced features of enhanced CT (Computer Tomography) portal phase images of the liver site. Methods In this retrospective study, 52 patients with metastatic hepatic carcinoma and 50 patients with hepatocellular carcinoma were among the patients who underwent preoperative enhanced CT examinations from 2017–2020. A total of 565 CT slices from these patients were used to train and validate the classification network (EI‐CNNet, training/validation: 452/113). First, the EI block was used to extract edge information from CT slices to enrich fine‐grained information and classify them. Then, ROC (Receiver Operating Characteristic) curve was used to evaluate the performance, accuracy, and recall of the EI‐CNNet. Finally, the classification results of EI‐CNNet were compared with popular classification models. Results By utilizing 80% data for model training and 20% data for model validation, the average accuracy of this experiment was 98.2% ± 0.62 (mean ± standard deviation (SD)), the recall rate was 97.23% ± 2.77, the precision rate was 98.02% ± 2.07, the network parameters were 11.83 MB, and the validation time was 9.83 s/sample. The classification accuracy was improved by 20.98% compared to the base CNN network and the validation time was 10.38 s/sample. Compared with other classification networks, the InceptionV3 network showed improved classification results, but the number of parameters was increased and the validation time was 33 s/sample, and the classification accuracy was improved by 6.51% using this method. Conclusion EI‐CNNet demonstrated promised diagnostic performance and has potential to reduce the workload of radiologists and may help distinguish whether the tumor is primary or metastatic in time; otherwise, it may be missed or misjudged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助xgx984采纳,获得10
3秒前
Nana发布了新的文献求助30
4秒前
6秒前
浅辰发布了新的文献求助10
7秒前
SciGPT应助66666天采纳,获得10
8秒前
酷波er应助攀登采纳,获得10
8秒前
善学以致用应助ccc采纳,获得10
9秒前
Akim应助hu采纳,获得10
11秒前
12秒前
赤侯完成签到,获得积分10
13秒前
戴衡霞完成签到,获得积分10
13秒前
4652376完成签到,获得积分10
14秒前
14秒前
m弟完成签到 ,获得积分10
15秒前
Zo完成签到,获得积分10
16秒前
小白狗发布了新的文献求助20
16秒前
17秒前
17秒前
迷路的翠安完成签到 ,获得积分10
18秒前
18秒前
peipei发布了新的文献求助30
18秒前
19秒前
19秒前
xiaoli完成签到,获得积分10
20秒前
我是老大应助无聊的不愁采纳,获得10
20秒前
NICE发布了新的文献求助30
21秒前
nnnn发布了新的文献求助10
21秒前
22秒前
ljy发布了新的文献求助10
22秒前
天想月完成签到,获得积分10
24秒前
xiaoli发布了新的文献求助10
24秒前
24秒前
hu完成签到,获得积分10
25秒前
何征结发布了新的文献求助10
26秒前
26秒前
菜菜完成签到 ,获得积分10
29秒前
南卡完成签到,获得积分10
29秒前
毛豆应助nnnn采纳,获得10
31秒前
33秒前
小二郎应助NICE采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315909
求助须知:如何正确求助?哪些是违规求助? 2947608
关于积分的说明 8537809
捐赠科研通 2623744
什么是DOI,文献DOI怎么找? 1435448
科研通“疑难数据库(出版商)”最低求助积分说明 665595
邀请新用户注册赠送积分活动 651426