Classification of metastatic hepatic carcinoma and hepatocellular carcinoma lesions using contrast‐enhanced CT based on EI‐CNNet

肝细胞癌 医学 放射科 转移癌 对比度(视觉) 肝癌 计算机断层摄影术 核医学 病理 内科学 物理 光学
作者
Xuehu Wang,Li Nie,Xiaoping Yin,Li-Hong Xing,Yongchang Zheng
出处
期刊:Medical Physics [Wiley]
卷期号:50 (9): 5630-5642 被引量:4
标识
DOI:10.1002/mp.16340
摘要

Abstract Background For hepatocellular carcinoma and metastatic hepatic carcinoma, imaging is one of the main diagnostic methods. In clinical practice, diagnosis mainly relied on experienced imaging physicians, which was inefficient and cannot met the demand for rapid and accurate diagnosis. Therefore, how to efficiently and accurately classify the two types of liver cancer based on imaging is an urgent problem to be solved at present. Purpose The purpose of this study was to use the deep learning classification model to help radiologists classify the single metastatic hepatic carcinoma and hepatocellular carcinoma based on the enhanced features of enhanced CT (Computer Tomography) portal phase images of the liver site. Methods In this retrospective study, 52 patients with metastatic hepatic carcinoma and 50 patients with hepatocellular carcinoma were among the patients who underwent preoperative enhanced CT examinations from 2017–2020. A total of 565 CT slices from these patients were used to train and validate the classification network (EI‐CNNet, training/validation: 452/113). First, the EI block was used to extract edge information from CT slices to enrich fine‐grained information and classify them. Then, ROC (Receiver Operating Characteristic) curve was used to evaluate the performance, accuracy, and recall of the EI‐CNNet. Finally, the classification results of EI‐CNNet were compared with popular classification models. Results By utilizing 80% data for model training and 20% data for model validation, the average accuracy of this experiment was 98.2% ± 0.62 (mean ± standard deviation (SD)), the recall rate was 97.23% ± 2.77, the precision rate was 98.02% ± 2.07, the network parameters were 11.83 MB, and the validation time was 9.83 s/sample. The classification accuracy was improved by 20.98% compared to the base CNN network and the validation time was 10.38 s/sample. Compared with other classification networks, the InceptionV3 network showed improved classification results, but the number of parameters was increased and the validation time was 33 s/sample, and the classification accuracy was improved by 6.51% using this method. Conclusion EI‐CNNet demonstrated promised diagnostic performance and has potential to reduce the workload of radiologists and may help distinguish whether the tumor is primary or metastatic in time; otherwise, it may be missed or misjudged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸奶燕麦球完成签到 ,获得积分10
1秒前
发嗲的乐安完成签到 ,获得积分10
1秒前
爆米花应助魔幻的泽洋采纳,获得10
4秒前
4秒前
FH挖掘机关注了科研通微信公众号
7秒前
文献自由侠完成签到,获得积分20
7秒前
陳新儒发布了新的文献求助10
7秒前
8秒前
Gauss应助heavenhorse采纳,获得30
9秒前
蟹老板完成签到,获得积分10
9秒前
9秒前
闵运气完成签到,获得积分10
9秒前
陌路发布了新的文献求助10
9秒前
斯文败类应助嘟嘟包采纳,获得30
10秒前
汉堡格完成签到,获得积分10
10秒前
11秒前
小凯同学完成签到 ,获得积分10
11秒前
沫沫完成签到 ,获得积分10
11秒前
叙白发布了新的文献求助30
11秒前
12秒前
斩妖凉完成签到,获得积分10
14秒前
14秒前
dudu发布了新的文献求助10
14秒前
子訡完成签到 ,获得积分10
14秒前
Xieyusen发布了新的文献求助10
14秒前
爱炖鸽子的咕咕完成签到,获得积分10
15秒前
欢呼忆丹发布了新的文献求助30
16秒前
16秒前
17秒前
17秒前
完美世界应助ZH采纳,获得10
18秒前
早睡发布了新的文献求助10
18秒前
sevenvictory应助颜琪采纳,获得10
18秒前
19秒前
梦比优斯发布了新的文献求助10
21秒前
21秒前
Dominic发布了新的文献求助10
21秒前
21秒前
檀a发布了新的文献求助10
24秒前
文艺的擎完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420