Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity

体素 人工智能 分割 计算机科学 磁共振成像 基本事实 稳健性(进化) 模式识别(心理学) 计算机视觉 医学 生物 放射科 生物化学 基因
作者
Sean Rothenberger,Neal M. Patel,Jiacheng Zhang,Susanne Schnell,Bruce Α. Craig,Sameer A. Ansari,Michael Markl,Pavlos P. Vlachos,Vitaliy L. Rayz
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2360-2373 被引量:1
标识
DOI:10.1109/tmi.2023.3251734
摘要

We present a method to automatically segment 4D flow magnetic resonance imaging (MRI) by identifying net flow effects using the standardized difference of means (SDM) velocity. The SDM velocity quantifies the ratio between the net flow and observed flow pulsatility in each voxel. Vessel segmentation is performed using an F-test, identifying voxels with significantly higher SDM velocity values than background voxels. We compare the SDM segmentation algorithm against pseudo-complex difference (PCD) intensity segmentation of 4D flow measurements in in vitro cerebral aneurysm models and 10 in vitro Circle of Willis (CoW) datasets. We also compared the SDM algorithm to convolutional neural network (CNN) segmentation in 5 thoracic vasculature datasets. The in vitro flow phantom geometry is known, while the ground truth geometries for the CoW and thoracic aortas are derived from high-resolution time-of-flight (TOF) magnetic resonance angiography and manual segmentation, respectively. The SDM algorithm demonstrates greater robustness than PCD and CNN approaches and can be applied to 4D flow data from other vascular territories. The SDM to PCD comparison demonstrated an approximate 48% increase in sensitivity in vitro and 70% increase in the CoW, respectively; the SDM and CNN sensitivities were similar. The vessel surface derived from the SDM method was 46% closer to the in vitro surfaces and 72% closer to the in vitro TOF surfaces than the PCD approach. The SDM and CNN approaches both accurately identify vessel surfaces. The SDM algorithm is a repeatable segmentation method, enabling reliable computation of hemodynamic metrics associated with cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljj1998完成签到,获得积分10
1秒前
葡萄成熟时完成签到 ,获得积分10
1秒前
可靠安蕾发布了新的文献求助10
1秒前
Danboard发布了新的文献求助10
2秒前
2秒前
2秒前
小宅宅完成签到,获得积分10
3秒前
余CC发布了新的文献求助10
4秒前
复杂的鸿完成签到,获得积分10
5秒前
5秒前
kkdd完成签到,获得积分10
5秒前
Hello应助木子采纳,获得10
7秒前
向阳而生完成签到 ,获得积分10
7秒前
汉堡完成签到 ,获得积分10
8秒前
传奇3应助非酋采纳,获得10
9秒前
复杂的鸿发布了新的文献求助10
9秒前
Libra完成签到,获得积分10
9秒前
顾矜应助欢喜的毛豆采纳,获得10
9秒前
Inory007完成签到,获得积分10
10秒前
10秒前
11秒前
莫非驳回了Jack80应助
11秒前
赵yy应助Smiling采纳,获得20
11秒前
11秒前
zzy完成签到,获得积分10
12秒前
青葙完成签到,获得积分10
12秒前
12秒前
fanfanzzz完成签到 ,获得积分10
12秒前
wangwangwang完成签到,获得积分10
12秒前
13秒前
非酋完成签到,获得积分20
15秒前
搜集达人应助复杂的鸿采纳,获得10
15秒前
16秒前
清颜发布了新的文献求助10
16秒前
lalala应助qizhixu采纳,获得10
16秒前
NexusExplorer应助木子采纳,获得10
16秒前
天天快乐应助naive采纳,获得10
17秒前
jeopardy完成签到,获得积分10
17秒前
17秒前
霸气秀完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271374
求助须知:如何正确求助?哪些是违规求助? 4429139
关于积分的说明 13787593
捐赠科研通 4307356
什么是DOI,文献DOI怎么找? 2363506
邀请新用户注册赠送积分活动 1359125
关于科研通互助平台的介绍 1322100