Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity

体素 人工智能 分割 计算机科学 磁共振成像 基本事实 稳健性(进化) 模式识别(心理学) 计算机视觉 医学 生物 放射科 生物化学 基因
作者
Sean Rothenberger,Neal M. Patel,Jiacheng Zhang,Susanne Schnell,Bruce Α. Craig,Sameer A. Ansari,Michael Markl,Pavlos P. Vlachos,Vitaliy L. Rayz
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2360-2373 被引量:1
标识
DOI:10.1109/tmi.2023.3251734
摘要

We present a method to automatically segment 4D flow magnetic resonance imaging (MRI) by identifying net flow effects using the standardized difference of means (SDM) velocity. The SDM velocity quantifies the ratio between the net flow and observed flow pulsatility in each voxel. Vessel segmentation is performed using an F-test, identifying voxels with significantly higher SDM velocity values than background voxels. We compare the SDM segmentation algorithm against pseudo-complex difference (PCD) intensity segmentation of 4D flow measurements in in vitro cerebral aneurysm models and 10 in vitro Circle of Willis (CoW) datasets. We also compared the SDM algorithm to convolutional neural network (CNN) segmentation in 5 thoracic vasculature datasets. The in vitro flow phantom geometry is known, while the ground truth geometries for the CoW and thoracic aortas are derived from high-resolution time-of-flight (TOF) magnetic resonance angiography and manual segmentation, respectively. The SDM algorithm demonstrates greater robustness than PCD and CNN approaches and can be applied to 4D flow data from other vascular territories. The SDM to PCD comparison demonstrated an approximate 48% increase in sensitivity in vitro and 70% increase in the CoW, respectively; the SDM and CNN sensitivities were similar. The vessel surface derived from the SDM method was 46% closer to the in vitro surfaces and 72% closer to the in vitro TOF surfaces than the PCD approach. The SDM and CNN approaches both accurately identify vessel surfaces. The SDM algorithm is a repeatable segmentation method, enabling reliable computation of hemodynamic metrics associated with cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
拼搏的飞薇完成签到,获得积分10
1秒前
刘畅完成签到 ,获得积分10
1秒前
害羞龙猫完成签到 ,获得积分10
2秒前
3秒前
等等发布了新的文献求助10
5秒前
JamesPei应助我要吃饭采纳,获得10
5秒前
科研猫完成签到,获得积分10
5秒前
jxas完成签到,获得积分10
6秒前
所所应助立追拓采纳,获得10
6秒前
7秒前
冰糖葫芦发布了新的文献求助30
7秒前
8秒前
8秒前
9秒前
sonya完成签到 ,获得积分10
10秒前
王嘎嘎完成签到 ,获得积分10
10秒前
goodesBright完成签到,获得积分10
11秒前
心杨完成签到 ,获得积分10
12秒前
毛毛发布了新的文献求助10
13秒前
小彻发布了新的文献求助10
13秒前
赵峰发布了新的文献求助10
14秒前
一去二三里完成签到,获得积分10
14秒前
seventonight2完成签到,获得积分10
15秒前
15秒前
酷波er应助合适钥匙采纳,获得10
16秒前
花园荆棘完成签到,获得积分10
20秒前
21秒前
背后的小白菜完成签到,获得积分10
22秒前
22秒前
秋浱发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
Henry应助xia采纳,获得200
24秒前
orixero应助shelly采纳,获得10
25秒前
NexusExplorer应助干净的雪枫采纳,获得10
25秒前
立追拓发布了新的文献求助10
26秒前
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175