已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity

体素 人工智能 分割 计算机科学 磁共振成像 基本事实 稳健性(进化) 模式识别(心理学) 计算机视觉 医学 生物 放射科 生物化学 基因
作者
Sean Rothenberger,Neal M. Patel,Jiacheng Zhang,Susanne Schnell,Bruce Α. Craig,Sameer A. Ansari,Michael Markl,Pavlos P. Vlachos,Vitaliy L. Rayz
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2360-2373 被引量:1
标识
DOI:10.1109/tmi.2023.3251734
摘要

We present a method to automatically segment 4D flow magnetic resonance imaging (MRI) by identifying net flow effects using the standardized difference of means (SDM) velocity. The SDM velocity quantifies the ratio between the net flow and observed flow pulsatility in each voxel. Vessel segmentation is performed using an F-test, identifying voxels with significantly higher SDM velocity values than background voxels. We compare the SDM segmentation algorithm against pseudo-complex difference (PCD) intensity segmentation of 4D flow measurements in in vitro cerebral aneurysm models and 10 in vitro Circle of Willis (CoW) datasets. We also compared the SDM algorithm to convolutional neural network (CNN) segmentation in 5 thoracic vasculature datasets. The in vitro flow phantom geometry is known, while the ground truth geometries for the CoW and thoracic aortas are derived from high-resolution time-of-flight (TOF) magnetic resonance angiography and manual segmentation, respectively. The SDM algorithm demonstrates greater robustness than PCD and CNN approaches and can be applied to 4D flow data from other vascular territories. The SDM to PCD comparison demonstrated an approximate 48% increase in sensitivity in vitro and 70% increase in the CoW, respectively; the SDM and CNN sensitivities were similar. The vessel surface derived from the SDM method was 46% closer to the in vitro surfaces and 72% closer to the in vitro TOF surfaces than the PCD approach. The SDM and CNN approaches both accurately identify vessel surfaces. The SDM algorithm is a repeatable segmentation method, enabling reliable computation of hemodynamic metrics associated with cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力书包完成签到 ,获得积分10
刚刚
1秒前
zhou国兵完成签到,获得积分10
3秒前
4秒前
一直向前发布了新的文献求助10
4秒前
miles发布了新的文献求助10
6秒前
6秒前
小幅上调发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得20
9秒前
9秒前
英姑应助carl采纳,获得10
10秒前
共享精神应助Leslie采纳,获得30
10秒前
tdtk发布了新的文献求助10
13秒前
彭于晏应助张姚采纳,获得10
15秒前
涛1118发布了新的文献求助10
15秒前
17秒前
17秒前
西瓜二郎发布了新的文献求助10
20秒前
Lucas应助涛1118采纳,获得10
21秒前
努力完成签到,获得积分10
22秒前
22秒前
22秒前
dada完成签到,获得积分10
23秒前
carl发布了新的文献求助10
23秒前
和谐亦瑶完成签到,获得积分10
23秒前
小兔子完成签到 ,获得积分10
24秒前
平底锅攻击完成签到 ,获得积分10
24秒前
斯文的萧发布了新的文献求助10
26秒前
十七完成签到 ,获得积分10
27秒前
小幅上调完成签到,获得积分20
27秒前
锦七发布了新的文献求助10
27秒前
乐乐应助eueurhj采纳,获得30
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208