Imaging distributed acoustic sensing-to-geophone conversion data: A field application to CO<sub>2</sub> sequestration data

检波器 地球物理成像 地质学 垂直地震剖面 遥感 分布式声传感 数据集 地震学 计算机科学 人工智能 光纤传感器 光纤 电信
作者
Yong Ma,Lei Fu,Weichang Li
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-43
标识
DOI:10.1190/int-2022-0098.1
摘要

Compared with conventional geophone data, distributed fiber-optic sensing, including distributed acoustic sensing (DAS), can provide better spatial coverage for imaging the subsurface with finer spatial sampling. Because DAS measures subsurface seismic responses differently than the geophone, imaging technologies (e.g., reverse time migration and full-waveform inversion) that are developed for conventional geophone data cannot be readily applied to original DAS data without causing uncertainties in phase or depth, especially when one compares the DAS imaging results against the usual geophone imaging results. Based on vertical seismic profile field data from a CO 2 sequestration site, we have compared the imaging results of the CO 2 storage reservoir associated with the DAS and the geophone data, respectively, and we illustrate the differences between the imaging results of the DAS and geophone data. The difference between the DAS and geophone imaging results could be critical in obtaining time-lapse signals for monitoring reservoir changes, e.g., in subsurface CO 2 sequestration. We develop to convert DAS to geophone data so that we can reduce the discrepancies between DAS and geophone imaging results and we therefore can reuse existing seismic imaging technologies. Two conversion methods, one physics-based and one deep-learning (DL)-based, are used for the DAS-to-geophone transformation. Field data results demonstrate that the DL-based approach can better successfully improve the alignment between the DAS and geophone images, whereas the physics-based solution is constrained by its assumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caya完成签到,获得积分10
刚刚
Tonnyjing应助jk采纳,获得10
1秒前
调研昵称发布了新的文献求助10
1秒前
毛豆发布了新的文献求助10
1秒前
光亮白羊完成签到 ,获得积分10
1秒前
默默犀牛完成签到 ,获得积分10
2秒前
2秒前
彭认真发布了新的文献求助10
2秒前
科研通AI2S应助jin采纳,获得10
2秒前
3秒前
良药苦口完成签到,获得积分10
3秒前
4秒前
5秒前
Boooooo完成签到,获得积分10
5秒前
混世暖暖小太阳完成签到,获得积分10
5秒前
5秒前
FashionBoy应助百浪多息采纳,获得10
5秒前
LLiu发布了新的文献求助30
5秒前
6秒前
攒星星发布了新的文献求助10
6秒前
研友_VZG7GZ应助Thi采纳,获得10
6秒前
pzp发布了新的文献求助10
7秒前
隐形曼青应助111采纳,获得10
7秒前
汉堡包应助111采纳,获得10
7秒前
牛牛发布了新的文献求助10
7秒前
xiaohan完成签到,获得积分10
7秒前
Hello应助jackycas采纳,获得10
8秒前
9秒前
9秒前
务实的小虾米完成签到,获得积分10
10秒前
dd完成签到,获得积分10
10秒前
Aurora完成签到,获得积分10
10秒前
10秒前
古德day发布了新的文献求助10
11秒前
11秒前
别骂小喷菇应助敬老院N号采纳,获得10
11秒前
别骂小喷菇应助敬老院N号采纳,获得10
11秒前
彭凯完成签到,获得积分10
12秒前
菠萝面包发布了新的文献求助10
12秒前
13秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054545
求助须知:如何正确求助?哪些是违规求助? 2711512
关于积分的说明 7426610
捐赠科研通 2356104
什么是DOI,文献DOI怎么找? 1247642
科研通“疑难数据库(出版商)”最低求助积分说明 606478
版权声明 596079