Pulvinar slits: Cellulose-deficient and de-methyl-esterified pectin-rich structures in a legume motor cell

膨胀压力 细胞壁 生物物理学 纤维素 化学 果胶 单糖 生物化学 生物
作者
Masahiro Takahara,Satoru Tsugawa,Shingo Sakamoto,Taku Demura,Miyuki T Nakata
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:192 (2): 857-870 被引量:3
标识
DOI:10.1093/plphys/kiad105
摘要

Abstract The cortical motor cells (CMCs) in a legume pulvinus execute the reversible deformation in leaf movement that is driven by changes in turgor pressure. In contrast to the underlying osmotic regulation property, the cell wall structure of CMCs that contributes to the movement has yet to be characterized in detail. Here, we report that the cell wall of CMCs has circumferential slits with low levels of cellulose deposition, which are widely conserved among legume species. This structure is unique and distinct from that of any other primary cell walls reported so far; thus, we named them “pulvinar slits.” Notably, we predominantly detected de-methyl-esterified homogalacturonan inside pulvinar slits, with a low deposition of highly methyl-esterified homogalacturonan, as with cellulose. In addition, Fourier transform infrared spectroscopy analysis indicated that the cell wall composition of pulvini is different from that of other axial organs, such as petioles or stems. Moreover, monosaccharide analysis showed that pulvini are pectin-rich organs like developing stems and that the amount of galacturonic acid in pulvini is greater than in developing stems. Computer modeling suggested that pulvinar slits facilitate anisotropic extension in the direction perpendicular to the slits in the presence of turgor pressure. When tissue slices of CMCs were transferred to different extracellular osmotic conditions, pulvinar slits altered their opening width, indicating their deformability. In this study, we thus characterized a distinctive cell wall structure of CMCs, adding to our knowledge of repetitive and reversible organ deformation as well as the structural diversity and function of the plant cell wall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LM发布了新的文献求助10
3秒前
学呀学完成签到 ,获得积分10
3秒前
小程别放弃完成签到,获得积分10
3秒前
4秒前
General完成签到 ,获得积分10
6秒前
刘家辉完成签到,获得积分10
7秒前
hsk发布了新的文献求助10
8秒前
喜静完成签到,获得积分10
9秒前
劲秉应助刘家辉采纳,获得10
12秒前
Islay50ppm完成签到 ,获得积分10
13秒前
mount完成签到,获得积分10
14秒前
每逢佳节胖三斤完成签到,获得积分10
15秒前
su完成签到,获得积分10
17秒前
17秒前
甜心院士完成签到 ,获得积分10
18秒前
科研狗完成签到 ,获得积分10
18秒前
未若从前i完成签到 ,获得积分10
18秒前
Singularity应助忧心的雁菱采纳,获得10
18秒前
所所应助CK采纳,获得10
19秒前
23秒前
24秒前
蓝天关注了科研通微信公众号
24秒前
hsk完成签到,获得积分10
24秒前
zc北完成签到,获得积分10
26秒前
29秒前
吴晨曦完成签到,获得积分10
30秒前
30秒前
搜集达人应助土木研学僧采纳,获得10
32秒前
葛怀锐完成签到 ,获得积分10
32秒前
CK发布了新的文献求助10
34秒前
搬砖的化学男完成签到 ,获得积分0
34秒前
35秒前
36秒前
SYSUer完成签到,获得积分10
36秒前
36秒前
蓝天发布了新的文献求助10
36秒前
Ryan完成签到,获得积分10
38秒前
雪山飞龙发布了新的文献求助10
39秒前
sylinmm完成签到,获得积分10
40秒前
peiqi佩奇发布了新的文献求助10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291662
求助须知:如何正确求助?哪些是违规求助? 2928139
关于积分的说明 8435531
捐赠科研通 2599970
什么是DOI,文献DOI怎么找? 1418887
科研通“疑难数据库(出版商)”最低求助积分说明 660150
邀请新用户注册赠送积分活动 642808