已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic adaptive event detection strategy based on power change-point weighting model

库苏姆 加权 事件(粒子物理) a计权 变更检测 计算机科学 熵(时间箭头) 交叉熵 实时计算 瞬态(计算机编程) 数据挖掘 数学 人工智能 模式识别(心理学) 统计 物理 放射科 操作系统 医学 量子力学
作者
Gang Wang,Zhao Li,Zhao Luo,Tao Zhang,Mingliang Lin,Jiahao Li,Xin Shen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:361: 122850-122850 被引量:1
标识
DOI:10.1016/j.apenergy.2024.122850
摘要

Event detection is a prerequisite and key component of NILM (Non-Intrusive Load Monitoring) by monitoring transient changes in residential loads to discern whether a transient event has occurred in an appliance. However, the event detection performance of existing algorithms is affected by the operating environment, and it isn't easy to maintain high accuracy. For this reason, this paper proposes an adaptive event detection method based on the PCW (power change-point weights) model. Specifically, the DACUSUM (Dynamic Adaptive Cumulative Sum) algorithm with dynamic updating of parameters is first proposed, which effectively avoids the miss and false detection of CUSUM in the process of event detection. Secondly, the PCW model is proposed, which is capable of evaluating the effect of event detection of thresholds through the transient information entropy without prior knowledge. Lastly, based on the DACUSUM and PCW model, the threshold-adaptive event detection method is proposed, which takes the transient information entropy as the objective function and utilizes the genetic algorithm to dynamically adjust the thresholds to improve the performance of event detection under different operating environments. Taking eight typical appliances as an example, on the one hand, the proposed DACUSUM reduces the leakage and false detection phenomena compared with CUSUM and improves the event detection performance. On the other hand, the PCW model-based event detection strategy doesn't need human intervention or prior knowledge and is adaptable to different operating environments. The experimental results show that the proposed strategy achieves F1 scores of over 90% for the event detection of eight types of home appliances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼睛大的胡萝卜完成签到 ,获得积分10
刚刚
情怀应助凹凸先森采纳,获得10
刚刚
3秒前
ghhhn发布了新的文献求助10
4秒前
4秒前
资山雁完成签到 ,获得积分10
4秒前
焱焱不忘完成签到 ,获得积分0
7秒前
杨远杰完成签到 ,获得积分10
7秒前
hulahula完成签到 ,获得积分10
7秒前
读研暴躁哥关注了科研通微信公众号
9秒前
9秒前
呆呆完成签到 ,获得积分10
9秒前
乔一发布了新的文献求助10
10秒前
12秒前
12秒前
呼啦呼啦完成签到 ,获得积分10
13秒前
梦想里发布了新的文献求助10
13秒前
FashionBoy应助jiayo采纳,获得10
14秒前
ruhemann发布了新的文献求助10
15秒前
Ying发布了新的文献求助10
17秒前
18秒前
乔一完成签到,获得积分20
18秒前
爆米花应助乔一采纳,获得10
24秒前
完美世界应助梦想里采纳,获得10
24秒前
酷波er应助ruhemann采纳,获得10
24秒前
stark完成签到,获得积分10
24秒前
寇博翔发布了新的文献求助10
25秒前
科研通AI6应助Ying采纳,获得10
25秒前
潇洒的马里奥完成签到,获得积分10
26秒前
soar完成签到 ,获得积分10
26秒前
26秒前
常绝山完成签到 ,获得积分10
27秒前
陈欣瑶完成签到 ,获得积分10
29秒前
ljn完成签到 ,获得积分10
29秒前
Duang完成签到,获得积分10
30秒前
明时完成签到,获得积分10
30秒前
李明珠发布了新的文献求助10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944379
求助须知:如何正确求助?哪些是违规求助? 4209328
关于积分的说明 13085062
捐赠科研通 3988891
什么是DOI,文献DOI怎么找? 2183953
邀请新用户注册赠送积分活动 1199314
关于科研通互助平台的介绍 1112211