Dynamic adaptive event detection strategy based on power change-point weighting model

库苏姆 加权 事件(粒子物理) a计权 变更检测 计算机科学 熵(时间箭头) 交叉熵 实时计算 瞬态(计算机编程) 数据挖掘 数学 人工智能 模式识别(心理学) 统计 物理 量子力学 医学 放射科 操作系统
作者
Gang Wang,Zhao Li,Zhao Luo,Tao Zhang,Mingliang Lin,Jiahao Li,Xin Shen
出处
期刊:Applied Energy [Elsevier]
卷期号:361: 122850-122850 被引量:1
标识
DOI:10.1016/j.apenergy.2024.122850
摘要

Event detection is a prerequisite and key component of NILM (Non-Intrusive Load Monitoring) by monitoring transient changes in residential loads to discern whether a transient event has occurred in an appliance. However, the event detection performance of existing algorithms is affected by the operating environment, and it isn't easy to maintain high accuracy. For this reason, this paper proposes an adaptive event detection method based on the PCW (power change-point weights) model. Specifically, the DACUSUM (Dynamic Adaptive Cumulative Sum) algorithm with dynamic updating of parameters is first proposed, which effectively avoids the miss and false detection of CUSUM in the process of event detection. Secondly, the PCW model is proposed, which is capable of evaluating the effect of event detection of thresholds through the transient information entropy without prior knowledge. Lastly, based on the DACUSUM and PCW model, the threshold-adaptive event detection method is proposed, which takes the transient information entropy as the objective function and utilizes the genetic algorithm to dynamically adjust the thresholds to improve the performance of event detection under different operating environments. Taking eight typical appliances as an example, on the one hand, the proposed DACUSUM reduces the leakage and false detection phenomena compared with CUSUM and improves the event detection performance. On the other hand, the PCW model-based event detection strategy doesn't need human intervention or prior knowledge and is adaptable to different operating environments. The experimental results show that the proposed strategy achieves F1 scores of over 90% for the event detection of eight types of home appliances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
傲娇诗完成签到,获得积分10
1秒前
华国锋应助心内龙教授采纳,获得20
2秒前
弘一完成签到,获得积分10
3秒前
搜集达人应助蔡小娜采纳,获得10
3秒前
5秒前
张立佳完成签到 ,获得积分10
5秒前
5秒前
lvsehx发布了新的文献求助10
6秒前
香蕉觅云应助尔尔采纳,获得10
6秒前
田様应助小蜗牛采纳,获得10
7秒前
洋溢完成签到,获得积分10
9秒前
酸菜萌萌鱼完成签到 ,获得积分10
11秒前
fgjvythjd完成签到 ,获得积分10
11秒前
15秒前
wyg117完成签到,获得积分10
16秒前
FashionBoy应助棉花糖采纳,获得10
17秒前
Lucas应助和谐乐珍采纳,获得10
18秒前
20秒前
带头大哥应助维生素采纳,获得200
20秒前
万能图书馆应助lvsehx采纳,获得10
21秒前
尔尔发布了新的文献求助10
21秒前
李霞完成签到,获得积分10
22秒前
23秒前
乐观寻绿完成签到 ,获得积分10
24秒前
不必要再讨论适合与否完成签到,获得积分10
25秒前
科研通AI2S应助wyg117采纳,获得10
27秒前
28秒前
shawn完成签到,获得积分10
28秒前
28秒前
Ysheng完成签到,获得积分10
29秒前
卓若之完成签到 ,获得积分10
29秒前
Becky完成签到,获得积分10
30秒前
棉花糖发布了新的文献求助10
31秒前
qq完成签到 ,获得积分10
32秒前
和谐乐珍发布了新的文献求助10
33秒前
健康的电灯胆完成签到,获得积分10
33秒前
栗子完成签到,获得积分10
34秒前
elle完成签到 ,获得积分10
37秒前
雪飞杨完成签到 ,获得积分10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242047
求助须知:如何正确求助?哪些是违规求助? 2886366
关于积分的说明 8243081
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383192
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417