Domain-Consistent and Uncertainty-Aware Network for Generalizable Gaze Estimation

计算机科学 凝视 估计 人工智能 领域(数学分析) 机器学习 计算机视觉 数学 数学分析 经济 管理
作者
Sihui Zhang,Yi Tian,Yilei Zhang,Mei Tian,Yaping Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6996-7011
标识
DOI:10.1109/tmm.2024.3358948
摘要

Unsupervised domain adaptive (UDA) gaze estimation aims to predict gaze directions of unlabeled target face or eye images given a set of annotated source images, which has been widely applied in practical applications. However, existing methods still perform poorly due to two major challenges. 1) There exists large personalized differences and style discrepancies between source and target samples, which leads the learned source model easily collapsing to biased results; 2) Data uncertainties inherent in reference samples will affect the generalization ability of their models. To tackle the above challenges, in this paper, we propose a novel Domain-Consistent and Uncertainty-Aware (DCUA) network for generalizable gaze estimation. Our DCUA network employs a two-phase framework where a primary training sub-network (PTNet) and a refined adaptation sub-network (RANet) are trained on the source and target domain, respectively. Firstly, to obtain robust and pure gaze-related features, we propose twain domain consistent constraints, that is, the intra-domain consistent constraint and the inter-domain consistent constraint. These two constraints could eliminate the impact of gaze-irrelevant factors by maintaining consistency between label and feature space. Secondly, to further improve the adaptability of our model, we propose dual uncertainty perception modules, which include an intrinsic uncertainty module and an extrinsic uncertainty module. These modules help DCUA network distinguish inferior reference samples and avoid overfitting to them. Experiments on four cross-domain gaze estimation tasks demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
邵丹完成签到 ,获得积分20
刚刚
Cccrik发布了新的文献求助30
1秒前
汉堡包应助一刀采纳,获得10
1秒前
1秒前
Dr.向发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助and999采纳,获得10
3秒前
英俊的铭应助夜莺采纳,获得10
4秒前
在水一方应助夜莺采纳,获得10
4秒前
Lucas应助夜莺采纳,获得10
4秒前
Jasper应助夜莺采纳,获得10
4秒前
完美世界应助onepine采纳,获得10
4秒前
落后青筠完成签到 ,获得积分10
4秒前
6秒前
JamesPei应助jeonghan采纳,获得10
7秒前
Adler发布了新的文献求助60
7秒前
wy_wy完成签到,获得积分10
7秒前
情怀应助猪猪hero采纳,获得10
8秒前
浮华完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
丘比特应助Jeje采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
超人研究生完成签到,获得积分10
10秒前
C胖胖完成签到,获得积分10
10秒前
Owen应助chromium22采纳,获得10
10秒前
颜靖仇完成签到,获得积分10
11秒前
大方若山完成签到,获得积分10
11秒前
nanami完成签到,获得积分10
12秒前
白开水完成签到,获得积分10
13秒前
流云完成签到,获得积分10
14秒前
匹诺曹完成签到,获得积分10
14秒前
HaojunWang完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
LilyHan完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069