Domain-Consistent and Uncertainty-Aware Network for Generalizable Gaze Estimation

计算机科学 凝视 估计 人工智能 领域(数学分析) 机器学习 计算机视觉 数学分析 数学 管理 经济
作者
Sihui Zhang,Yi Tian,Yilei Zhang,Mei Tian,Yaping Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6996-7011
标识
DOI:10.1109/tmm.2024.3358948
摘要

Unsupervised domain adaptive (UDA) gaze estimation aims to predict gaze directions of unlabeled target face or eye images given a set of annotated source images, which has been widely applied in practical applications. However, existing methods still perform poorly due to two major challenges. 1) There exists large personalized differences and style discrepancies between source and target samples, which leads the learned source model easily collapsing to biased results; 2) Data uncertainties inherent in reference samples will affect the generalization ability of their models. To tackle the above challenges, in this paper, we propose a novel Domain-Consistent and Uncertainty-Aware (DCUA) network for generalizable gaze estimation. Our DCUA network employs a two-phase framework where a primary training sub-network (PTNet) and a refined adaptation sub-network (RANet) are trained on the source and target domain, respectively. Firstly, to obtain robust and pure gaze-related features, we propose twain domain consistent constraints, that is, the intra-domain consistent constraint and the inter-domain consistent constraint. These two constraints could eliminate the impact of gaze-irrelevant factors by maintaining consistency between label and feature space. Secondly, to further improve the adaptability of our model, we propose dual uncertainty perception modules, which include an intrinsic uncertainty module and an extrinsic uncertainty module. These modules help DCUA network distinguish inferior reference samples and avoid overfitting to them. Experiments on four cross-domain gaze estimation tasks demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
明明就发布了新的文献求助10
1秒前
1秒前
针尖上的王子完成签到,获得积分10
1秒前
追寻雨完成签到,获得积分10
2秒前
2秒前
2秒前
89完成签到,获得积分10
3秒前
zpmi发布了新的文献求助10
3秒前
3秒前
小紫完成签到 ,获得积分10
3秒前
chenpsy完成签到,获得积分10
5秒前
朴素的不乐完成签到 ,获得积分10
5秒前
科研通AI5应助yu采纳,获得10
6秒前
哦咯o发布了新的文献求助10
6秒前
葛怀锐发布了新的文献求助10
6秒前
pirateharbor完成签到,获得积分10
6秒前
莫离发布了新的文献求助10
7秒前
Lavenda发布了新的文献求助10
7秒前
啦熊发布了新的文献求助10
7秒前
7秒前
cccccc完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
小胖完成签到,获得积分10
9秒前
彩色的涵瑶完成签到,获得积分10
9秒前
10秒前
李爱国应助小火苗采纳,获得10
10秒前
隐形曼青应助QZF采纳,获得10
11秒前
传奇3应助我要发sci采纳,获得10
11秒前
12秒前
陈橙橙子发布了新的文献求助10
12秒前
咿呀完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助150
12秒前
ldykkkkk完成签到 ,获得积分10
13秒前
hanzhangjian完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775