Domain-Consistent and Uncertainty-Aware Network for Generalizable Gaze Estimation

计算机科学 凝视 估计 人工智能 领域(数学分析) 机器学习 计算机视觉 数学分析 数学 管理 经济
作者
Sihui Zhang,Yi Tian,Yilei Zhang,Mei Tian,Yaping Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6996-7011
标识
DOI:10.1109/tmm.2024.3358948
摘要

Unsupervised domain adaptive (UDA) gaze estimation aims to predict gaze directions of unlabeled target face or eye images given a set of annotated source images, which has been widely applied in practical applications. However, existing methods still perform poorly due to two major challenges. 1) There exists large personalized differences and style discrepancies between source and target samples, which leads the learned source model easily collapsing to biased results; 2) Data uncertainties inherent in reference samples will affect the generalization ability of their models. To tackle the above challenges, in this paper, we propose a novel Domain-Consistent and Uncertainty-Aware (DCUA) network for generalizable gaze estimation. Our DCUA network employs a two-phase framework where a primary training sub-network (PTNet) and a refined adaptation sub-network (RANet) are trained on the source and target domain, respectively. Firstly, to obtain robust and pure gaze-related features, we propose twain domain consistent constraints, that is, the intra-domain consistent constraint and the inter-domain consistent constraint. These two constraints could eliminate the impact of gaze-irrelevant factors by maintaining consistency between label and feature space. Secondly, to further improve the adaptability of our model, we propose dual uncertainty perception modules, which include an intrinsic uncertainty module and an extrinsic uncertainty module. These modules help DCUA network distinguish inferior reference samples and avoid overfitting to them. Experiments on four cross-domain gaze estimation tasks demonstrate the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Foalphaz发布了新的文献求助10
1秒前
拉长的问晴完成签到,获得积分10
3秒前
蓝天应助michael采纳,获得30
3秒前
研友_VZG7GZ应助wu采纳,获得10
4秒前
我是老大应助minrui采纳,获得10
5秒前
6秒前
cij123完成签到,获得积分10
6秒前
单薄飞莲完成签到,获得积分10
6秒前
7秒前
李子彤完成签到 ,获得积分10
8秒前
今夕何夕完成签到,获得积分10
8秒前
敏感代云完成签到,获得积分10
11秒前
clock完成签到 ,获得积分10
11秒前
dty发布了新的文献求助50
12秒前
彩色德天完成签到,获得积分10
13秒前
13秒前
15秒前
CodeCraft应助Winter采纳,获得10
16秒前
刘铠瑜发布了新的文献求助10
19秒前
20秒前
直率的菠萝完成签到 ,获得积分10
20秒前
20秒前
科研通AI6应助maybe采纳,获得80
20秒前
dty完成签到,获得积分10
21秒前
健忘的元冬完成签到,获得积分10
21秒前
情怀应助Azhe采纳,获得10
22秒前
23秒前
minrui发布了新的文献求助10
23秒前
辛勤怀亦完成签到,获得积分10
23秒前
李木子完成签到 ,获得积分10
23秒前
喜来乐完成签到,获得积分10
25秒前
zz完成签到,获得积分10
26秒前
伯克利芙蓉王完成签到,获得积分10
27秒前
Winter发布了新的文献求助10
29秒前
29秒前
科研通AI6应助害羞映容采纳,获得10
30秒前
华仔应助王手采纳,获得10
31秒前
海的呼唤发布了新的文献求助10
34秒前
35秒前
浮游应助cw采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329