Domain-Consistent and Uncertainty-Aware Network for Generalizable Gaze Estimation

计算机科学 凝视 估计 人工智能 领域(数学分析) 机器学习 计算机视觉 数学 数学分析 经济 管理
作者
Sihui Zhang,Yi Tian,Yilei Zhang,Mei Tian,Yaping Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6996-7011
标识
DOI:10.1109/tmm.2024.3358948
摘要

Unsupervised domain adaptive (UDA) gaze estimation aims to predict gaze directions of unlabeled target face or eye images given a set of annotated source images, which has been widely applied in practical applications. However, existing methods still perform poorly due to two major challenges. 1) There exists large personalized differences and style discrepancies between source and target samples, which leads the learned source model easily collapsing to biased results; 2) Data uncertainties inherent in reference samples will affect the generalization ability of their models. To tackle the above challenges, in this paper, we propose a novel Domain-Consistent and Uncertainty-Aware (DCUA) network for generalizable gaze estimation. Our DCUA network employs a two-phase framework where a primary training sub-network (PTNet) and a refined adaptation sub-network (RANet) are trained on the source and target domain, respectively. Firstly, to obtain robust and pure gaze-related features, we propose twain domain consistent constraints, that is, the intra-domain consistent constraint and the inter-domain consistent constraint. These two constraints could eliminate the impact of gaze-irrelevant factors by maintaining consistency between label and feature space. Secondly, to further improve the adaptability of our model, we propose dual uncertainty perception modules, which include an intrinsic uncertainty module and an extrinsic uncertainty module. These modules help DCUA network distinguish inferior reference samples and avoid overfitting to them. Experiments on four cross-domain gaze estimation tasks demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣谷槐完成签到,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
罗冬发布了新的文献求助10
2秒前
嗯哼应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
汀烟应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
alex发布了新的文献求助10
3秒前
Joey发布了新的文献求助10
4秒前
深情安青应助LY采纳,获得10
4秒前
4秒前
小蘑菇应助无私迎海采纳,获得10
4秒前
李健的小迷弟应助yoru16采纳,获得10
5秒前
5秒前
6秒前
kook11完成签到,获得积分10
6秒前
好肥的阿借应助小夏采纳,获得20
7秒前
孝顺的青枫完成签到,获得积分10
7秒前
wuwuwu完成签到,获得积分10
7秒前
8秒前
8秒前
隐形曼青应助远方采纳,获得10
8秒前
wuwuwu发布了新的文献求助10
10秒前
11秒前
12秒前
tY发布了新的文献求助10
13秒前
芒果味猕猴桃完成签到,获得积分10
13秒前
祭酒完成签到 ,获得积分10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225072
求助须知:如何正确求助?哪些是违规求助? 2873405
关于积分的说明 8185186
捐赠科研通 2540959
什么是DOI,文献DOI怎么找? 1371973
科研通“疑难数据库(出版商)”最低求助积分说明 646341
邀请新用户注册赠送积分活动 620463