AMHGCN: Adaptive multi-level hypergraph convolution network for human motion prediction

超图 利用 计算机科学 代表(政治) 图形 卷积(计算机科学) 理论计算机科学 人工智能 数学 人工神经网络 离散数学 政治学 计算机安全 政治 法学
作者
Jinkai Li,Jinghua Wang,Wei Lian,Xin Wang,Xiaoling Luo,Yaming Xu
出处
期刊:Neural Networks [Elsevier]
卷期号:172: 106153-106153 被引量:1
标识
DOI:10.1016/j.neunet.2024.106153
摘要

Human motion prediction is the key technology for many real-life applications, e.g., self-driving and human–robot interaction. The recent approaches adopt the unrestricted full-connection graph representation to capture the relationships inside the human skeleton. However, there are two issues to be solved: (i) these unrestricted full-connection graph representation methods neglect the inherent dependencies across the joints of the human body; (ii) these methods represent human motions using the features extracted from a single level and thus can neither fully exploit the various connection relationships among the human body nor guarantee the human motion prediction results to be reasonable. To tackle the above issues, we propose an adaptive multi-level hypergraph convolution network (AMHGCN), which uses the adaptive multi-level hypergraph representation to capture various dependencies among the human body. Our method has four different levels of hypergraph representations, including (i) the joint-level hypergraph representation to capture inherent kinetic dependencies in the human body, (ii) the part-level hypergraph representation to exploit the kinetic characteristics at a higher level (in comparison to the joint-level) by viewing some part of the human body as an entirety, (iii) the component-level hypergraph representation to model the semantic information, and (iv) the global-level hypergraph representation to extract long-distance dependencies in the human body. In addition, to take full advantage of the knowledge carried in the training data, we propose a reverse loss (i.e., adopting the future human poses to predict the historical poses reversely) to realize data augmentation. Extensive experiments show that our proposed AMHGCN can achieve state-of-the-art performance on three benchmarks, i.e., Human3.6M, CMU-Mocap, and 3DPW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笨小孩完成签到,获得积分10
3秒前
Jaden发布了新的文献求助10
4秒前
4秒前
6秒前
lan发布了新的文献求助10
6秒前
6秒前
ccm应助嗡嗡大王采纳,获得10
7秒前
纯真的元风完成签到,获得积分10
7秒前
牧之原翔子完成签到,获得积分10
8秒前
孤独小震发布了新的文献求助10
10秒前
mof完成签到,获得积分10
10秒前
10秒前
10秒前
张阳完成签到,获得积分10
11秒前
桐桐应助郑石采纳,获得10
11秒前
打打应助小mo爱吃李采纳,获得10
13秒前
劲秉应助852采纳,获得10
13秒前
Jaden完成签到,获得积分10
14秒前
专一的荧完成签到,获得积分10
15秒前
16秒前
8R60d8应助tczw667采纳,获得10
16秒前
17秒前
17秒前
Zyyyh发布了新的文献求助10
18秒前
18秒前
18秒前
Sicily发布了新的文献求助10
20秒前
liang发布了新的文献求助10
21秒前
FashionBoy应助HAY采纳,获得10
22秒前
ZengQiu发布了新的文献求助10
23秒前
23秒前
今后应助852采纳,获得10
23秒前
幼儿园老大完成签到,获得积分10
24秒前
yyy发布了新的文献求助10
25秒前
25秒前
hello完成签到,获得积分10
25秒前
科研通AI2S应助花花采纳,获得10
26秒前
26秒前
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269474
求助须知:如何正确求助?哪些是违规求助? 2909017
关于积分的说明 8347691
捐赠科研通 2579253
什么是DOI,文献DOI怎么找? 1402733
科研通“疑难数据库(出版商)”最低求助积分说明 655478
邀请新用户注册赠送积分活动 634763