电催化剂
过电位
析氧
材料科学
塔菲尔方程
氧化物
纳米颗粒
钙钛矿(结构)
化学工程
纳米复合材料
无机化学
纳米材料
镍
纳米技术
化学
电极
电化学
冶金
物理化学
工程类
作者
Deeksha Kubba,Imtiaz Ahmed,Ayan Roy,Pawanpreet Kour,Chandra Shekhar Yadav,S. K. Sharma,Kamlesh Yadav,Krishna Kanta Haldar
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2024-01-12
卷期号:7 (2): 1536-1547
被引量:6
标识
DOI:10.1021/acsanm.3c03868
摘要
Multifunctional ABO3 perovskite oxide nanomaterial was found to be an exceptional electrocatalyst for the oxygen evolution reaction (OER), a key anodic reaction in water electrolysis. To modify the properties of perovskite oxide electrocatalysts, different activation strategies have been used in recent years. This study uses a combination of two activation strategies, namely, doping and nanocomposite fabrication, to generate a perovskite oxide as an electrocatalyst for the OER. Here, we have demonstrated this by synthesizing LaFeO3 perovskite oxide nanoparticles with different percentages of cobalt doping on the B-site using the sol–gel method. The doping of smaller Co ions on Fe sites led to lattice distortion and compression in the LaFeO3 crystal lattice, leading to microstrains at the grain boundaries and the formation of surface defects. Researchers then anchored composition-optimized doped LaFe0.8Co0.2O3 perovskite nanoparticles onto nickel hydroxide (Ni(OH)2) nanoflowers in the alpha phase by in situ hydrothermal treatment, resulting in the formation of the LaFe0.8Co0.2O3/Ni(OH)2 (LFCO-0.2/Ni(OH)2) nanocomposite. This hybrid nanocomposite showed a low overpotential of 329 mV at j = 10 mA/cm2 and a small Tafel slope of 95 mV dec–1 for the OER. The increased activity of the electrocatalyst is attributed to the texture construction of the 2D Ni(OH)2 nanoflowers decorated with doped LaFeO3 nanoparticles and the synergistic effect between them. The synthesized LFCO-0.2/Ni(OH)2 composite features a large number of active sites and an increased active surface area, resulting in excellent catalytic activity. This approach paves a change in the direction for the rational design of hybrid composites of perovskite nanomaterials with defect engineering for superior OER performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI