Physical Basis of Thermal Conduction

热传导 热导率 热力学 基础(线性代数) 材料科学 温度梯度 边值问题 热的 机械 物理 数学 数学分析 几何学 气象学
作者
Zhang Xian,Ping Zhang,Chao Xiao,Yanyan Wang,Xin Ding,Xianglan Liu,Xingyou Tian
标识
DOI:10.1002/9783527843121.ch1
摘要

Chapter 1 Physical Basis of Thermal Conduction Xian Zhang, Xian Zhang Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorPing Zhang, Ping Zhang School of Materials Science & Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601 Anhui, P. R. ChinaSearch for more papers by this authorChao Xiao, Chao Xiao Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorYanyan Wang, Yanyan Wang Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorXin Ding, Xin Ding Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorXianglan Liu, Xianglan Liu Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorXingyou Tian, Xingyou Tian Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this author Xian Zhang, Xian Zhang Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorPing Zhang, Ping Zhang School of Materials Science & Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601 Anhui, P. R. ChinaSearch for more papers by this authorChao Xiao, Chao Xiao Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorYanyan Wang, Yanyan Wang Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorXin Ding, Xin Ding Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorXianglan Liu, Xianglan Liu Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this authorXingyou Tian, Xingyou Tian Chinese Academy of Sciences, Institute of Solid State Physics, Hefei Institutes of Physical Science, 350 Shushanhu Road, Hefei, 230031 Anhui, P. R. ChinaSearch for more papers by this author Book Editor(s):Xingyou Tian, Xingyou Tian Chinese Academy of Sciences, Institute of Solid State Physics, 350 Shushanhu Road, Hefei, 230031 ChinaSearch for more papers by this author First published: 15 December 2023 https://doi.org/10.1002/9783527843121.ch1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter introduces the temperature gradient and Fourier law based on the theory of substance heat conduction. Then, the differential equation of heat conduction is deduced, and the boundary conditions for the definite solution are given. On the basis of understanding the heat conduction, the micro-mechanisms of heat conduction of gases, liquids, and solids are compared, and the relevant formulas for calculating the thermal conductivity of different substances are summarized. Finally, some factors affecting the thermal conductivity of solid materials, including pressure, temperature, and crystal structure, are summarized. References Zhao , A.Z. , Wingert , M.C. , Chen , R. et al. ( 2021 ). Phonon gas model for thermal conductivity of dense, strongly interacting liquids . Journal of Applied Physics 129 ( 23 ): 235101 . 10.1063/5.0040734 Web of Science®Google Scholar Chapman , S. and Cowling , T.G. ( 1952 ). The Mathematical Theory of Nonuniform Gases . New York : Cambridge Univ. Press . Google Scholar Hirschfelder , J.O. , Bird , R.B. , and Spotz , E.L. ( 1948 ). The transport properties for non-polar gases . The Journal of Chemical Physics 16 ( 10 ): 968 – 981 . 10.1063/1.1746696 CASWeb of Science®Google Scholar Maloka , I.E. , Hashim , E.T. , and Ibrahim , S.Y. ( 2004 ). Effect of molecular weight on thermal conductivity of gases . Petroleum Science and Technology 22 ( 11–12 ): 1507 – 1511 . 10.1081/LFT-200027842 CASWeb of Science®Google Scholar Peierls , R. ( 1929 ). The kinetic theory of thermal conduction in crystals . Annalen der Physik 3 ( 8 ): 1055 – 1101 . 10.1002/andp.19293950803 CASGoogle Scholar Lv , W. and Henry , A. ( 2016 ). Examining the validity of the phonon gas model in amorphous materials . Scientific Reports 6 : 37675 . 10.1038/srep37675 CASPubMedWeb of Science®Google Scholar Chen , Y. , Lukes , J.R. , Li , D. et al. ( 2004 ). Thermal expansion and impurity effects on lattice thermal conductivity of solid argon . The Journal of Chemical Physics 120 ( 8 ): 3841 – 3846 . 10.1063/1.1643725 CASPubMedWeb of Science®Google Scholar Klemens , P.G. and Simon , F.E. ( 1951 ). The thermal conductivity of dielectric solids at low temperatures (Theoretical) . Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 208 ( 1092 ): 108 – 133 . 10.1098/rspa.1951.0147 CASWeb of Science®Google Scholar Kittel , C. ( 1956 ). Introduction to Solid State Physics , 2 e. Google Scholar Kingery , W.D. and McQuarrie , M.C. ( 1954 ). Thermal conductivity: I, concepts of measurement and factors affecting thermal conductivity of ceramic materials . Journal of the American Ceramic Society 37 ( 2 ): 67 – 72 . 10.1111/j.1551-2916.1954.tb20100.x CASWeb of Science®Google Scholar Wingert , M.C. , Zheng , J. , Kwon , S. et al. ( 2016 ). Thermal transport in amorphous materials: a review . Semiconductor Science and Technology 31 ( 11 ): 113003 . 10.1088/0268-1242/31/11/113003 Web of Science®Google Scholar Einstein , A. ( 1911 ). Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes . Annalen der Physik 340 ( 10 ): 898 – 908 . 10.1002/andp.19113401005 Google Scholar Slack , G.A. ( 1979 ). The thermal conductivity of nonmetallic crystals . In: Solid State Physics , vol. 34 (ed. H. Ehrenreich , F. Seitz , and D. Turnbull ), 1 – 71 . Academic Press . 10.1016/S0081-1947(08)60359-8 Google Scholar Cahill , D.G. , Watson , S.K. , and Pohl , R.O. ( 1992 ). Lower limit to the thermal conductivity of disordered crystals . Physical Review B: Condensed Matter 46 ( 10 ): 6131 – 6140 . 10.1103/PhysRevB.46.6131 CASPubMedWeb of Science®Google Scholar Agne , M.T. , Hanus , R. , and Snyder , G.J. ( 2018 ). Minimum thermal conductivity in the context of diffuson-mediated thermal transport . Energy & Environmental Science 11 ( 3 ): 609 – 616 . 10.1039/C7EE03256K Web of Science®Google Scholar Feldman , J.L. , Kluge , M.D. , Allen , P.B. et al. ( 1993 ). Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon . Physical Review B 48 ( 17 ): 12589 – 12602 . 10.1103/PhysRevB.48.12589 CASWeb of Science®Google Scholar Kittel , C. ( 1949 ). Interpretation of the thermal conductivity of glasses . Physical Review 75 ( 6 ): 972 – 974 . 10.1103/PhysRev.75.972 CASWeb of Science®Google Scholar Jamieson , D.T. ( 1979 ). Thermal conductivity of liquids . Journal of Chemical and Engineering Data 24 ( 3 ): 244 – 245 . 10.1021/je60082a037 CASWeb of Science®Google Scholar Bridgman , P.W. ( 1923 ). The thermal conductivity of liquids . Proceedings of the National Academy of Sciences 9 ( 10 ): 341 – 345 . 10.1073/pnas.9.10.341 CASPubMedGoogle Scholar Huber , M.L. , Perkins , R.A. , Friend , D.G. et al. ( 2012 ). New international formulation for the thermal conductivity of H 2 O . Journal of Physical and Chemical Reference Data 41 ( 3 ): 033102 . 10.1063/1.4738955 Web of Science®Google Scholar van Elk , E.P. , Arendsen , A.R.J. , and Versteeg , G.F. ( 2009 ). A new flowsheeting tool for flue gas treating . Energy Procedia 1 ( 1 ): 1481 – 1488 . https://doi.org/10.1016/j.egypro.2009.01.194 . 10.1016/j.egypro.2009.01.194 Google Scholar Harminder , M.P.S.a. ( 1974 ). Thermal Conductivity of binary liquid mixture . Chemical Physics Letters 25 ( 3 ): 445 – 446 . 10.1016/0009-2614(74)85341-8 Web of Science®Google Scholar Harminder , M.P.S.a. ( 1974 ). Thermal conductivity of binary liquid mixtures . 27 ( 3 ): 448 – 449 . Google Scholar Rowley , R.L. ( 1982 ). A local composition model for multicomponent liquid mixture thermal conductivities . Chemical Engineering Science 37 ( 6 ): 897 – 904 . 10.1016/0009-2509(82)80178-4 CASWeb of Science®Google Scholar Maloka , I.E. ( 2007 ). Thermal conductivities of liquid mixtures . Petroleum Science and Technology 25 ( 8 ): 1065 – 1072 . 10.1081/LFT-200041074 CASWeb of Science®Google Scholar Eucken , A. ( 1911 ). Über die Temperaturabhängigkeit der Wärmeleitfähigkeit fester Nichtmetalle . Annalen der Physik 339 ( 2 ): 185 – 221 . 10.1002/andp.19113390202 Google Scholar Berman , R. and Simon , F.E. ( 1951 ). The thermal conductivities of some dielectric solids at low temperatures (Experimental) . Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 208 ( 1092 ): 90 – 108 . CASGoogle Scholar Sun , Z. , Yuan , K. , Zhang , X. et al. ( 2018 ). Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations . Physical Chemistry Chemical Physics 20 ( 48 ): 30331 – 30339 . 10.1039/C8CP05858J CASPubMedWeb of Science®Google Scholar Zhou , Y. , Dong , Z.-Y. , Hsieh , W.-P. et al. ( 2022 ). Thermal conductivity of materials under pressure . Nature Reviews Physics 4 ( 5 ): 319 – 335 . 10.1038/s42254-022-00423-9 CASGoogle Scholar Wang , L. , Tian , F. , Liang , X. et al. ( 2019 ). High-pressure phases of boron arsenide with potential high thermal conductivity . Physical Review B 99 ( 17 ). 10.1103/PhysRevB.99.174104 PubMedWeb of Science®Google Scholar Saha , P. , Mazumder , A. , and Mukherjee , G.D. ( 2020 ). Thermal conductivity of dense hcp iron: Direct measurements using laser heated diamond anvil cell . Geoscience Frontiers 11 ( 5 ): 1755 – 1761 . 10.1016/j.gsf.2019.12.010 CASWeb of Science®Google Scholar Lindsay , L. , Broido , D.A. , Carrete , J. et al. ( 2015 ). Anomalous pressure dependence of thermal conductivities of large mass ratio compounds . Physical Review B 91 ( 12 ): 121202(R). 10.1103/PhysRevB.91.121202 Web of Science®Google Scholar Ravichandran , N.K. and Broido , D. ( 2019 ). Non-monotonic pressure dependence of the thermal conductivity of boron arsenide . Nature Communications 10 ( 1 ): 827 . 10.1038/s41467-019-08713-0 PubMedGoogle Scholar Yuan , K. , Zhang , X. , Tang , D. et al. ( 2018 ). Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations . Physical Review B 98 ( 14 ): 144303 . 10.1103/PhysRevB.98.144303 Web of Science®Google Scholar Lan , G. , Ouyang , B. , and Song , J. ( 2015 ). The role of low-lying optical phonons in lattice thermal conductance of rare-earth pyrochlores: a first-principle study . Acta Materialia 91 : 304 – 317 . 10.1016/j.actamat.2015.03.004 CASWeb of Science®Google Scholar Bhowmick , S. and Shenoy , V.B. ( 2006 ). Effect of strain on the thermal conductivity of solids . The Journal of Chemical Physics 125 ( 16 ): 164513 . 10.1063/1.2361287 Web of Science®Google Scholar Krupskii , I.N. and Manzhely , V.G. ( 1967 ). Thermal conductivity of solid argon . Physica Status Solidi B 24 ( 1 ): K53 – K56 . 10.1002/pssb.19670240154 CASGoogle Scholar Clayton , F. and Batchelder , D.N. ( 1973 ). Temperature and volume dependence of the thermal conductivity of solid argon . Journal of Physics C: Solid State Physics 6 ( 7 ): 1213 . 10.1088/0022-3719/6/7/012 CASWeb of Science®Google Scholar Dugdale , J.S. and Macdonald , D.K.C. ( 1955 ). Lattice thermal conductivity . Physical Review 98 ( 6 ): 1751 – 1752 . 10.1103/PhysRev.98.1751 CASWeb of Science®Google Scholar Thermal Management Materials for Electronic Packaging: Preparation, Characterization, and Devices ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppat5012完成签到 ,获得积分20
1秒前
12121231完成签到,获得积分20
2秒前
搜集达人应助大白牛采纳,获得10
3秒前
3秒前
郝南烟发布了新的文献求助10
3秒前
5秒前
科研通AI2S应助starry采纳,获得10
5秒前
5秒前
6秒前
6秒前
Anokang完成签到 ,获得积分10
6秒前
8秒前
yangyu完成签到,获得积分10
8秒前
Raydiaz发布了新的文献求助10
8秒前
9秒前
jg发布了新的文献求助10
10秒前
10秒前
rtx00发布了新的文献求助10
10秒前
11秒前
芽衣发布了新的文献求助10
11秒前
11秒前
11秒前
Xu_ss发布了新的文献求助10
12秒前
youdation完成签到,获得积分10
13秒前
tianzml0应助姜奕康采纳,获得10
13秒前
照徊亿完成签到,获得积分10
13秒前
14秒前
萧羊青完成签到,获得积分10
14秒前
我来了发布了新的文献求助10
15秒前
18秒前
19秒前
不说话的不倒翁完成签到 ,获得积分10
19秒前
19秒前
19秒前
赘婿应助侯MM采纳,获得10
20秒前
酷波er应助2y采纳,获得40
20秒前
tianzml0应助要开心采纳,获得10
20秒前
斯文败类应助要开心采纳,获得10
20秒前
CipherSage应助YOUYOU采纳,获得10
20秒前
Lucas应助我要发文章采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
Evolution 4000
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
La Chine révolutionnaire d'aujourd'hui / Van Min, Kang Hsin 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3037169
求助须知:如何正确求助?哪些是违规求助? 2696126
关于积分的说明 7355236
捐赠科研通 2337975
什么是DOI,文献DOI怎么找? 1237439
科研通“疑难数据库(出版商)”最低求助积分说明 602481
版权声明 595006