A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties

刚度 带隙 材料科学 超材料 振动 格子(音乐) 衰减 有限元法 凝聚态物理 结构工程 声学 光学 光电子学 复合材料 物理 工程类
作者
Jiayang Liu,Shu Li
出处
期刊:Materials [MDPI AG]
卷期号:16 (24): 7669-7669 被引量:2
标识
DOI:10.3390/ma16247669
摘要

The bandgap tuning potential offered by negative-stiffness lattice structures, characterized by their unique mechanical properties, represents a promising and burgeoning field. The potential of large deformations in lattice structures to transition between stable configurations is explored in this study. This transformation offers a novel method for modifying the frequency range of elastic wave attenuation, simultaneously absorbing energy and effectively generating diverse bandgap ranges. In this paper, an enhanced lattice structure is introduced, building upon the foundation of the normal negative-stiffness lattice structures. The research examined the behavior of the suggested negative-stiffness lattice structures when subjected to uniaxial compression. This included analyzing the dispersion spectra and bandgaps across different states of deformation. It also delved into the effects of geometric parameter changes on bandgap properties. Furthermore, the findings highlight that the normal negative-stiffness lattice structure demonstrates restricted capabilities in attenuating vibrations. In contrast, notable performance improvements are displayed by the improved negative-stiffness lattice structure, featuring distinct energy band structures and variable bandgap ranges in response to differing deformation states. This highlights the feasibility of bandgap tuning through the deformation of negatively stiffened structures. Finally, the overall metamaterial structure is simulated using a unit cell finite element dynamic model, and its vibration transmission properties and frequency response patterns are analyzed. A fresh perspective on the research and design of negative-stiffness lattice structures, particularly focusing on their bandgap tuning capabilities, is offered in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助豆皮下决心采纳,获得10
刚刚
csh_uyu发布了新的文献求助10
1秒前
Yoki完成签到 ,获得积分10
1秒前
起风了发布了新的文献求助10
1秒前
断鸿完成签到 ,获得积分10
1秒前
害羞向日葵完成签到 ,获得积分10
1秒前
Scorpio完成签到,获得积分10
2秒前
接淅发布了新的文献求助10
2秒前
yKkkkkk发布了新的文献求助10
3秒前
liutt完成签到,获得积分10
3秒前
独特的凝云完成签到 ,获得积分10
3秒前
3秒前
Jasper应助dddhp采纳,获得10
4秒前
12138完成签到,获得积分10
4秒前
小良发布了新的文献求助10
4秒前
4秒前
yu完成签到,获得积分10
4秒前
4秒前
千百度完成签到,获得积分10
4秒前
Jerry20184完成签到 ,获得积分10
5秒前
pcx完成签到,获得积分10
6秒前
guo完成签到,获得积分20
6秒前
田様应助小巧的铅笔采纳,获得10
6秒前
giao发布了新的文献求助10
7秒前
zzj-zjut完成签到,获得积分10
7秒前
7秒前
碎星关注了科研通微信公众号
7秒前
封听白完成签到,获得积分0
8秒前
牛马正在写文章完成签到,获得积分10
8秒前
嘻嘻完成签到,获得积分10
8秒前
帅哥完成签到,获得积分10
8秒前
csh_uyu完成签到,获得积分10
9秒前
9秒前
唔西迪西完成签到,获得积分10
9秒前
10秒前
10秒前
disciple完成签到,获得积分10
11秒前
11秒前
11秒前
小良完成签到,获得积分10
13秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3435539
求助须知:如何正确求助?哪些是违规求助? 3032798
关于积分的说明 8947991
捐赠科研通 2720831
什么是DOI,文献DOI怎么找? 1492238
科研通“疑难数据库(出版商)”最低求助积分说明 689843
邀请新用户注册赠送积分活动 685965