Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning

医学 梯度升压 肝细胞癌 危险系数 机器学习 内科学 Boosting(机器学习) 比例危险模型 朴素贝叶斯分类器 随机森林 人工智能 肿瘤科 接收机工作特性 置信区间 计算机科学 支持向量机
作者
Wendao Liu,Ran Wei,Junwei Chen,Yangyang Li,Hongshen Pang,Wentao Zhang,Chao An,Chengzhi Li
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:34 (8): 5094-5107 被引量:1
标识
DOI:10.1007/s00330-024-10581-2
摘要

Abstract Objective To develop and validate a risk scoring scale model (RSSM) for stratifying prognostic risk after intra-arterial therapies (IATs) for hepatocellular carcinoma (HCC). Methods Between February 2014 and October 2022, 2338 patients with HCC who underwent initial IATs were consecutively enrolled. These patients were divided into training datasets (TD, n = 1700), internal validation datasets (ITD, n = 428), and external validation datasets (ETD, n = 200). Five-years death was used to predict outcome. Thirty-four clinical information were input and five supervised machine learning (ML) algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBT), and Random Forest (RF), were compared using the areas under the receiver operating characteristic (AUC) with DeLong test. The variables with top important ML scores were used to build the RSSM by stepwise Cox regression. Results The CatBoost model achieved the best discrimination when 12 top variables were input, with the AUC of 0.851 (95% confidence intervals (CI), 0.833–0.868) for TD, 0.817 (95%CI, 0.759–0.857) for ITD, and 0.791 (95%CI, 0.748–0.834) for ETD. The RSSM was developed based on the immune checkpoint inhibitors (ICI) (hazard ratios (HR), 0.678; 95%CI 0.549, 0.837), tyrosine kinase inhibitors (TKI) (HR, 0.702; 95%CI 0.605, 0.814), local therapy (HR, 0.104; 95%CI 0.014, 0.747), response to the first IAT (HR, 4.221; 95%CI 2.229, 7.994), tumor size (HR, 1.054; 95%CI 1.038, 1.070), and BCLC grade (HR, 2.375; 95%CI 1.950, 2.894). Kaplan–Meier analysis confirmed the role of RSSM in risk stratification ( p < 0.001). Conclusions The RSSM can stratify accurately prognostic risk for HCC patients received IAT. On the basis, an online calculator permits easy implementation of this model. Clinical relevance statement The risk scoring scale model could be easily implemented for physicians to stratify risk and predict prognosis quickly and accurately, thereby serving as a more favorable tool to strengthen individualized intra-arterial therapies and management in patients with unresectable hepatocellular carcinoma. Key Points • The Categorical Gradient Boosting (CatBoost) algorithm achieved the optimal and robust predictive ability (AUC, 0.851 (95%CI, 0.833–0.868) in training datasets, 0.817 (95%CI, 0.759–0.857) in internal validation datasets, and 0.791 (95%CI, 0.748–0.834) in external validation datasets) for prediction of 5-years death of hepatocellular carcinoma (HCC) after intra-arterial therapies (IATs) among five machine learning models. • We used the SHapley Additive exPlanations algorithms to explain the CatBoost model so as to resolve the black boxes of machine learning principles. • A simpler restricted variable, risk scoring scale model (RSSM), derived by stepwise Cox regression for risk stratification after intra-arterial therapies for hepatocellular carcinoma , provides the potential forewarning to adopt combination strategies for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao完成签到,获得积分10
刚刚
cx完成签到,获得积分10
1秒前
1秒前
马上动起来完成签到,获得积分10
3秒前
SYLH应助tttx采纳,获得10
3秒前
安静的乐松完成签到,获得积分10
3秒前
mike_007发布了新的文献求助10
5秒前
6秒前
DijiaXu完成签到,获得积分10
6秒前
乖猫要努力完成签到,获得积分0
6秒前
小可爱完成签到,获得积分10
8秒前
黄黄完成签到,获得积分10
8秒前
cavi完成签到,获得积分10
8秒前
彪行天下完成签到,获得积分10
9秒前
lzl008完成签到 ,获得积分10
9秒前
mr完成签到 ,获得积分10
10秒前
海比天蓝关注了科研通微信公众号
10秒前
anan完成签到 ,获得积分10
10秒前
丁心莲关注了科研通微信公众号
10秒前
APS完成签到,获得积分10
10秒前
wkyt发布了新的文献求助10
11秒前
大胆的忆寒完成签到,获得积分10
12秒前
13秒前
tttx完成签到,获得积分10
13秒前
乐观若烟完成签到 ,获得积分10
14秒前
何必呢完成签到,获得积分10
14秒前
SC武完成签到,获得积分10
14秒前
清爽冬莲完成签到 ,获得积分10
17秒前
肖飞鱼完成签到,获得积分10
17秒前
文章快快来完成签到,获得积分10
18秒前
蛋炒饭加洋葱应助dd采纳,获得10
18秒前
萌萌完成签到,获得积分10
18秒前
啊鲤完成签到,获得积分10
18秒前
AJ完成签到 ,获得积分10
19秒前
贪吃完成签到,获得积分10
20秒前
白苹果完成签到 ,获得积分10
20秒前
自然千山完成签到,获得积分10
20秒前
独孤阳光完成签到,获得积分10
21秒前
欧欧欧导完成签到,获得积分10
21秒前
xiejuan完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027