重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning

医学 梯度升压 肝细胞癌 危险系数 机器学习 内科学 Boosting(机器学习) 比例危险模型 朴素贝叶斯分类器 随机森林 人工智能 肿瘤科 接收机工作特性 置信区间 计算机科学 支持向量机
作者
Wendao Liu,Ran Wei,Junwei Chen,Yangyang Li,Hongshen Pang,Wentao Zhang,Chao An,Chengzhi Li
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (8): 5094-5107 被引量:1
标识
DOI:10.1007/s00330-024-10581-2
摘要

Abstract Objective To develop and validate a risk scoring scale model (RSSM) for stratifying prognostic risk after intra-arterial therapies (IATs) for hepatocellular carcinoma (HCC). Methods Between February 2014 and October 2022, 2338 patients with HCC who underwent initial IATs were consecutively enrolled. These patients were divided into training datasets (TD, n = 1700), internal validation datasets (ITD, n = 428), and external validation datasets (ETD, n = 200). Five-years death was used to predict outcome. Thirty-four clinical information were input and five supervised machine learning (ML) algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBT), and Random Forest (RF), were compared using the areas under the receiver operating characteristic (AUC) with DeLong test. The variables with top important ML scores were used to build the RSSM by stepwise Cox regression. Results The CatBoost model achieved the best discrimination when 12 top variables were input, with the AUC of 0.851 (95% confidence intervals (CI), 0.833–0.868) for TD, 0.817 (95%CI, 0.759–0.857) for ITD, and 0.791 (95%CI, 0.748–0.834) for ETD. The RSSM was developed based on the immune checkpoint inhibitors (ICI) (hazard ratios (HR), 0.678; 95%CI 0.549, 0.837), tyrosine kinase inhibitors (TKI) (HR, 0.702; 95%CI 0.605, 0.814), local therapy (HR, 0.104; 95%CI 0.014, 0.747), response to the first IAT (HR, 4.221; 95%CI 2.229, 7.994), tumor size (HR, 1.054; 95%CI 1.038, 1.070), and BCLC grade (HR, 2.375; 95%CI 1.950, 2.894). Kaplan–Meier analysis confirmed the role of RSSM in risk stratification ( p < 0.001). Conclusions The RSSM can stratify accurately prognostic risk for HCC patients received IAT. On the basis, an online calculator permits easy implementation of this model. Clinical relevance statement The risk scoring scale model could be easily implemented for physicians to stratify risk and predict prognosis quickly and accurately, thereby serving as a more favorable tool to strengthen individualized intra-arterial therapies and management in patients with unresectable hepatocellular carcinoma. Key Points • The Categorical Gradient Boosting (CatBoost) algorithm achieved the optimal and robust predictive ability (AUC, 0.851 (95%CI, 0.833–0.868) in training datasets, 0.817 (95%CI, 0.759–0.857) in internal validation datasets, and 0.791 (95%CI, 0.748–0.834) in external validation datasets) for prediction of 5-years death of hepatocellular carcinoma (HCC) after intra-arterial therapies (IATs) among five machine learning models. • We used the SHapley Additive exPlanations algorithms to explain the CatBoost model so as to resolve the black boxes of machine learning principles. • A simpler restricted variable, risk scoring scale model (RSSM), derived by stepwise Cox regression for risk stratification after intra-arterial therapies for hepatocellular carcinoma , provides the potential forewarning to adopt combination strategies for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tsss发布了新的文献求助10
刚刚
淡定草丛完成签到,获得积分10
1秒前
星辰大海应助Gaojin锦采纳,获得10
1秒前
JTHan发布了新的文献求助10
2秒前
小马甲应助梁云采纳,获得10
2秒前
2秒前
善学以致用应助Layla101采纳,获得10
2秒前
2秒前
李三婷完成签到,获得积分10
2秒前
3秒前
zhy完成签到 ,获得积分10
3秒前
张千惠发布了新的文献求助10
3秒前
caizhizhao发布了新的文献求助10
3秒前
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
LL发布了新的文献求助10
4秒前
Axs完成签到,获得积分10
4秒前
Python_Liu完成签到 ,获得积分10
4秒前
槐零音发布了新的文献求助10
4秒前
桐桐应助奇奇怪怪采纳,获得10
5秒前
5秒前
领导范儿应助Wangle采纳,获得30
5秒前
无名之辈发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
hhhhhh发布了新的文献求助30
6秒前
7秒前
顾矜应助wzc采纳,获得10
7秒前
小二郎应助zhuchenglu采纳,获得10
8秒前
wy.he举报lulu求助涉嫌违规
8秒前
可爱小菜完成签到,获得积分10
8秒前
8秒前
10秒前
xinzhongchen1发布了新的文献求助10
10秒前
11秒前
李小羊完成签到,获得积分10
11秒前
starrism完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605