Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning

医学 梯度升压 肝细胞癌 危险系数 机器学习 内科学 Boosting(机器学习) 比例危险模型 朴素贝叶斯分类器 随机森林 人工智能 肿瘤科 接收机工作特性 置信区间 计算机科学 支持向量机
作者
Wendao Liu,Ran Wei,Junwei Chen,Yangyang Li,Hongshen Pang,Wentao Zhang,Chao An,Chengzhi Li
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (8): 5094-5107 被引量:1
标识
DOI:10.1007/s00330-024-10581-2
摘要

Abstract Objective To develop and validate a risk scoring scale model (RSSM) for stratifying prognostic risk after intra-arterial therapies (IATs) for hepatocellular carcinoma (HCC). Methods Between February 2014 and October 2022, 2338 patients with HCC who underwent initial IATs were consecutively enrolled. These patients were divided into training datasets (TD, n = 1700), internal validation datasets (ITD, n = 428), and external validation datasets (ETD, n = 200). Five-years death was used to predict outcome. Thirty-four clinical information were input and five supervised machine learning (ML) algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBT), and Random Forest (RF), were compared using the areas under the receiver operating characteristic (AUC) with DeLong test. The variables with top important ML scores were used to build the RSSM by stepwise Cox regression. Results The CatBoost model achieved the best discrimination when 12 top variables were input, with the AUC of 0.851 (95% confidence intervals (CI), 0.833–0.868) for TD, 0.817 (95%CI, 0.759–0.857) for ITD, and 0.791 (95%CI, 0.748–0.834) for ETD. The RSSM was developed based on the immune checkpoint inhibitors (ICI) (hazard ratios (HR), 0.678; 95%CI 0.549, 0.837), tyrosine kinase inhibitors (TKI) (HR, 0.702; 95%CI 0.605, 0.814), local therapy (HR, 0.104; 95%CI 0.014, 0.747), response to the first IAT (HR, 4.221; 95%CI 2.229, 7.994), tumor size (HR, 1.054; 95%CI 1.038, 1.070), and BCLC grade (HR, 2.375; 95%CI 1.950, 2.894). Kaplan–Meier analysis confirmed the role of RSSM in risk stratification ( p < 0.001). Conclusions The RSSM can stratify accurately prognostic risk for HCC patients received IAT. On the basis, an online calculator permits easy implementation of this model. Clinical relevance statement The risk scoring scale model could be easily implemented for physicians to stratify risk and predict prognosis quickly and accurately, thereby serving as a more favorable tool to strengthen individualized intra-arterial therapies and management in patients with unresectable hepatocellular carcinoma. Key Points • The Categorical Gradient Boosting (CatBoost) algorithm achieved the optimal and robust predictive ability (AUC, 0.851 (95%CI, 0.833–0.868) in training datasets, 0.817 (95%CI, 0.759–0.857) in internal validation datasets, and 0.791 (95%CI, 0.748–0.834) in external validation datasets) for prediction of 5-years death of hepatocellular carcinoma (HCC) after intra-arterial therapies (IATs) among five machine learning models. • We used the SHapley Additive exPlanations algorithms to explain the CatBoost model so as to resolve the black boxes of machine learning principles. • A simpler restricted variable, risk scoring scale model (RSSM), derived by stepwise Cox regression for risk stratification after intra-arterial therapies for hepatocellular carcinoma , provides the potential forewarning to adopt combination strategies for high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenbin完成签到,获得积分10
1秒前
2秒前
prolooklog完成签到 ,获得积分10
2秒前
2秒前
大个应助ZZZ采纳,获得10
2秒前
3秒前
3秒前
FF发布了新的文献求助10
3秒前
zigzag完成签到,获得积分10
4秒前
BALABALA发布了新的文献求助10
4秒前
zy0411发布了新的文献求助10
4秒前
nana完成签到,获得积分10
4秒前
青椒黑蒜发布了新的文献求助10
4秒前
4秒前
fff发布了新的文献求助10
5秒前
5秒前
5秒前
自信的易云完成签到,获得积分10
6秒前
契梦Diana发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
科研通AI6应助lsl599采纳,获得10
6秒前
自然友菱完成签到,获得积分10
7秒前
机械小白完成签到,获得积分20
7秒前
Ch完成签到 ,获得积分0
7秒前
7秒前
7秒前
逍遥完成签到,获得积分10
7秒前
脑壳疼发布了新的文献求助10
8秒前
FashionBoy应助福星高照采纳,获得10
8秒前
weihua发布了新的文献求助10
8秒前
CodeCraft应助标致忆霜采纳,获得10
8秒前
挺帅一男的完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
桐桐应助TGU的小马同学采纳,获得10
8秒前
kekekek完成签到 ,获得积分10
9秒前
科研通AI6应助Anastasia采纳,获得10
9秒前
科研闲人完成签到,获得积分0
9秒前
脑洞疼应助陈辰采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401