Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning

医学 梯度升压 肝细胞癌 危险系数 机器学习 内科学 Boosting(机器学习) 比例危险模型 朴素贝叶斯分类器 随机森林 人工智能 肿瘤科 接收机工作特性 置信区间 计算机科学 支持向量机
作者
Wendao Liu,Ran Wei,Junwei Chen,Yangyang Li,Hongshen Pang,Wentao Zhang,Chao An,Chengzhi Li
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (8): 5094-5107 被引量:1
标识
DOI:10.1007/s00330-024-10581-2
摘要

Abstract Objective To develop and validate a risk scoring scale model (RSSM) for stratifying prognostic risk after intra-arterial therapies (IATs) for hepatocellular carcinoma (HCC). Methods Between February 2014 and October 2022, 2338 patients with HCC who underwent initial IATs were consecutively enrolled. These patients were divided into training datasets (TD, n = 1700), internal validation datasets (ITD, n = 428), and external validation datasets (ETD, n = 200). Five-years death was used to predict outcome. Thirty-four clinical information were input and five supervised machine learning (ML) algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBT), and Random Forest (RF), were compared using the areas under the receiver operating characteristic (AUC) with DeLong test. The variables with top important ML scores were used to build the RSSM by stepwise Cox regression. Results The CatBoost model achieved the best discrimination when 12 top variables were input, with the AUC of 0.851 (95% confidence intervals (CI), 0.833–0.868) for TD, 0.817 (95%CI, 0.759–0.857) for ITD, and 0.791 (95%CI, 0.748–0.834) for ETD. The RSSM was developed based on the immune checkpoint inhibitors (ICI) (hazard ratios (HR), 0.678; 95%CI 0.549, 0.837), tyrosine kinase inhibitors (TKI) (HR, 0.702; 95%CI 0.605, 0.814), local therapy (HR, 0.104; 95%CI 0.014, 0.747), response to the first IAT (HR, 4.221; 95%CI 2.229, 7.994), tumor size (HR, 1.054; 95%CI 1.038, 1.070), and BCLC grade (HR, 2.375; 95%CI 1.950, 2.894). Kaplan–Meier analysis confirmed the role of RSSM in risk stratification ( p < 0.001). Conclusions The RSSM can stratify accurately prognostic risk for HCC patients received IAT. On the basis, an online calculator permits easy implementation of this model. Clinical relevance statement The risk scoring scale model could be easily implemented for physicians to stratify risk and predict prognosis quickly and accurately, thereby serving as a more favorable tool to strengthen individualized intra-arterial therapies and management in patients with unresectable hepatocellular carcinoma. Key Points • The Categorical Gradient Boosting (CatBoost) algorithm achieved the optimal and robust predictive ability (AUC, 0.851 (95%CI, 0.833–0.868) in training datasets, 0.817 (95%CI, 0.759–0.857) in internal validation datasets, and 0.791 (95%CI, 0.748–0.834) in external validation datasets) for prediction of 5-years death of hepatocellular carcinoma (HCC) after intra-arterial therapies (IATs) among five machine learning models. • We used the SHapley Additive exPlanations algorithms to explain the CatBoost model so as to resolve the black boxes of machine learning principles. • A simpler restricted variable, risk scoring scale model (RSSM), derived by stepwise Cox regression for risk stratification after intra-arterial therapies for hepatocellular carcinoma , provides the potential forewarning to adopt combination strategies for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
发财小鱼完成签到 ,获得积分10
1秒前
xjp完成签到,获得积分10
1秒前
科研通AI2S应助kzg采纳,获得10
1秒前
fabulous完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
王宇杰完成签到,获得积分10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
Gilana应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
可耐的妙海完成签到 ,获得积分10
3秒前
xyzdmmm完成签到,获得积分10
4秒前
常葶完成签到,获得积分10
5秒前
mofei完成签到,获得积分20
5秒前
张ZC发布了新的文献求助10
7秒前
小北完成签到,获得积分10
7秒前
芋圆完成签到,获得积分10
7秒前
梓ccc完成签到,获得积分10
8秒前
真实的麦片完成签到,获得积分10
8秒前
8秒前
dh完成签到,获得积分10
8秒前
王梓磬完成签到,获得积分10
9秒前
10秒前
10秒前
梦鱼完成签到,获得积分10
10秒前
努力看文献的卑微打工人完成签到,获得积分10
11秒前
kskd完成签到 ,获得积分10
12秒前
13秒前
Yolo完成签到,获得积分10
13秒前
积极若云发布了新的文献求助10
14秒前
jjj完成签到 ,获得积分10
14秒前
exquisite完成签到,获得积分10
15秒前
15秒前
怡然猎豹完成签到,获得积分10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180066
求助须知:如何正确求助?哪些是违规求助? 2830409
关于积分的说明 7977031
捐赠科研通 2491999
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954