Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction

污染物 苯酚 催化作用 矿化(土壤科学) 水溶液 气凝胶 化学 反应速率常数 石墨烯 碳纤维 降级(电信) 同种类的 化学工程 动力学 纳米技术 材料科学 有机化学 计算机科学 电信 物理 量子力学 复合数 氮气 工程类 复合材料 热力学
作者
Xiang Zhang,Jingjing Tang,Lingling Wang,Chuan Wang,Lei Chen,Xinqing Chen,Jieshu Qian,Bingcai Pan
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:43
标识
DOI:10.1038/s41467-024-45106-4
摘要

Abstract Heterogeneous Fenton reaction represents one of the most reliable technologies to ensure water safety, but is currently challenged by the sluggish Fe(III) reduction, excessive input of chemicals for organic mineralization, and undesirable carbon emission. Current endeavors to improve the catalytic performance of Fenton reaction are mostly focused on how to accelerate Fe(III) reduction, while the pollutant degradation step is habitually overlooked. Here, we report a nanoconfinement strategy by using graphene aerogel (GA) to support UiO-66-NH 2 -(Zr) binding atomic Fe(III), which alters the carbon transfer route during phenol removal from kinetically favored ring-opening route to thermodynamically favored oligomerization route. GA nanoconfinement favors the Fe(III) reduction by enriching the reductive intermediates and allows much faster phenol removal than the unconfined analog (by 208 times in terms of first-order rate constant) and highly efficient removal of total organic carbon, i.e., 92.2 ± 3.7% versus 3.6 ± 0.3% in 60 min. Moreover, this oligomerization route reduces the oxidant consumption for phenol removal by more than 95% and carbon emission by 77.9%, compared to the mineralization route in homogeneous Fe 2+ +H 2 O 2 system. Our findings may upgrade the regulatory toolkit for Fenton reactions and provide an alternative carbon transfer route for the removal of aqueous pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
1秒前
reck发布了新的文献求助10
1秒前
2秒前
DK发布了新的文献求助10
2秒前
英俊的铭应助ren采纳,获得10
2秒前
圈圈发布了新的文献求助10
2秒前
乐乱完成签到 ,获得积分10
3秒前
415484112完成签到,获得积分10
4秒前
yinyi发布了新的文献求助10
4秒前
4秒前
赵一丁完成签到,获得积分10
5秒前
成就绮琴完成签到 ,获得积分10
5秒前
Chen完成签到,获得积分10
5秒前
huanfid完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
Stitch完成签到 ,获得积分10
6秒前
6秒前
眯眯眼的冷珍完成签到,获得积分10
6秒前
bjyx完成签到,获得积分10
6秒前
reck完成签到,获得积分10
7秒前
pharmstudent发布了新的文献求助30
7秒前
小田完成签到,获得积分10
7秒前
小喵发布了新的文献求助10
8秒前
FashionBoy应助毛毛哦啊采纳,获得10
8秒前
Lucas应助Chen采纳,获得10
9秒前
强健的蚂蚁完成签到,获得积分20
9秒前
小宇发布了新的文献求助10
9秒前
斜杠武完成签到,获得积分20
9秒前
10秒前
伞兵龙发布了新的文献求助10
10秒前
RC_Wang应助科研小民工采纳,获得10
10秒前
sanben完成签到,获得积分10
10秒前
10秒前
_蝴蝶小姐完成签到,获得积分10
11秒前
诗轩发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672