Mean-field reinforcement learning for decentralized task offloading in vehicular edge computing

计算机科学 强化学习 分布式计算 可扩展性 容错 边缘计算 移动边缘计算 服务器 延迟(音频) GSM演进的增强数据速率 计算机网络 智能交通系统 任务(项目管理) 车载自组网 人工智能 无线自组网 无线 土木工程 工程类 经济 管理 数据库 电信
作者
Shuling Shen,Guojiang Shen,Xiaoxue Yang,Feng Xia,Hong Du,Xiangjie Kong
出处
期刊:Journal of Systems Architecture [Elsevier BV]
卷期号:146: 103048-103048
标识
DOI:10.1016/j.sysarc.2023.103048
摘要

Vehicular Edge Computing (VEC) is a promising paradigm for providing low-latency and high-reliability services in the Internet of Vehicles (IoV). The increasing number of mobile devices and the diverse resource requirements of the growing IoV have resulted in a shift from centralized resource management to a decentralized approach. This shift offers improved fault tolerance, scalability, and privacy preservation. However, constructing collaborative awareness and coordination mechanisms between multiple vehicles and edge nodes in a decentralized manner is a challenge. To address this issue, we propose a decentralized many-to-many task offloading method that aims to minimize the average task completion latency of vehicles. In this study, we propose a data-sharing mechanism between vehicles and edge servers using the digital twin service, which provides global environmental perceptions to the vehicles by a low-cost approach. Additionally, we develop a mean-field multi-agent reinforcement learning algorithm to generate coordinated task offloading schemes. Instead of interacting with multiple agents, the vehicle only needs to respond to the mean action of the environment. Based on this transition, the agent generates coordinated task offloading decisions in complex scenarios. We evaluate the performance of our method using real urban traffic data. Experiment results verify the efficiency of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
自由的面包完成签到,获得积分10
1秒前
cc发布了新的文献求助10
1秒前
Foldog发布了新的文献求助20
2秒前
wanci应助3080采纳,获得10
2秒前
2秒前
zyj发布了新的文献求助30
2秒前
Colin完成签到,获得积分10
2秒前
3秒前
剑门侠客完成签到,获得积分20
3秒前
597发布了新的文献求助10
3秒前
清新完成签到,获得积分10
3秒前
烟花应助zwc采纳,获得10
4秒前
4秒前
左友铭发布了新的文献求助10
5秒前
zhangao完成签到,获得积分10
5秒前
北极黑猩猩完成签到,获得积分10
5秒前
SYLH应助Luu采纳,获得10
5秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
深情安青应助满意的龙猫采纳,获得30
7秒前
pluto应助cavi采纳,获得10
8秒前
9秒前
11秒前
沉尘完成签到,获得积分10
11秒前
科研踏寻完成签到,获得积分10
11秒前
郭笑园完成签到,获得积分10
12秒前
elysia发布了新的文献求助10
12秒前
研友_VZG7GZ应助LIUUU采纳,获得10
13秒前
缥缈的机器猫完成签到,获得积分10
14秒前
15秒前
欢喜嘉懿完成签到,获得积分20
16秒前
YK发布了新的文献求助10
16秒前
wanci应助czy0818采纳,获得10
16秒前
人生如梦应助驰驰采纳,获得10
17秒前
ngldy完成签到,获得积分10
19秒前
华仔应助Foldog采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794