已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients

偏头痛 医学 接收机工作特性 光环 先兆偏头痛 灰色(单位) 导水管周围灰质 慢性偏头痛 特征选择 人工智能 放射科 内科学 计算机科学 中枢神经系统 中脑
作者
Ismail Mese,Rahşan Karacı,Ceylan Altintas Taslicay,Cengizhan Taslicay,Gür Akansel,Saime Füsun Mayda Domaç
出处
期刊:Ideggyogyaszati Szemle-clinical Neuroscience [Ideggyogyaszati Szemle Journal]
卷期号:77 (1-2): 39-49
标识
DOI:10.18071/isz.77.0039
摘要

Background and purpose – The aim of the study was to investigate the question: Can MRI radiomics analysis of the periaqueductal gray region elucidate the pathophysiological mechanisms underlying various migraine subtypes, and can a machine learning model using these radiomics features accurately differentiate between migraine patients and healthy individuals, as well as between migraine subtypes, including atypical cases with overlapping symptoms? Methods – The study analyzed initial MRI images of individuals taken after their first migraine diagnosis, and additional MRI scans were acquired from healthy subjects. Radiomics modeling was applied to analyze all the MRI images in the periaqueductal gray region. The dataset was randomized, and oversampling was used if there was class imbalance between groups. The optimal algorithm-based feature selection method was employed to select the most important 5-10 features to differentiate between the two groups. The classification performance of AI algorithms was evaluated using receiver operating characteristic analysis to calculate the area under the curve, classification accuracy, sensitivity, and specificity values. Participants were required to have a confirmed diagnosis of either episodic migraine, probable migraine, or chronic migraine. Patients with aura, those who used migraine-preventive medication within the past six months, or had chronic illnesses, psychiatric disorders, cerebrovascular conditions, neoplastic diseases, or other headache types were excluded from the study. Additionally, 102 healthy subjects who met the inclusion and exclusion criteria were included. Results – The algorithm-based information gain method for feature reduction had the best performance among all methods, with the first-order, gray-level size zone matrix, and gray-level co-occurrence matrix classes being the dominant feature classes. The machine learning model correctly classified 82.4% of migraine patients from healthy subjects. Within the migraine group, 74.1% of the episodic migraine-probable migraine patients and 90.5% of the chronic migraine patients were accurately classified. No significant difference was found between probable migraine and episodic migraine patients in terms of the periaqueductal gray region radiomics features. The kNN algorithm showed the best performance for classifying episodic migraine-probable migraine subtypes, while the Random Forest algorithm demonstrated the best performance for classifying the migraine group and chronic migraine subtype. Conclusion – A radiomics-based machine learning model, utilizing standard MR images obtained during the diagnosis and followup of migraine patients, shows promise not only in aiding migraine diagnosis and classification for clinical approach, but also in understanding the neurological mechanisms underlying migraines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
短短急个球完成签到,获得积分10
刚刚
星辰大海应助科研小巴采纳,获得10
2秒前
小蘑菇发布了新的文献求助10
3秒前
3秒前
Cecilia发布了新的文献求助50
4秒前
黑摄会阿Fay完成签到,获得积分10
5秒前
5秒前
7秒前
随机科研完成签到,获得积分10
7秒前
烟花应助小盖采纳,获得10
7秒前
MJH123456发布了新的文献求助10
9秒前
大神瓜发布了新的文献求助10
10秒前
11秒前
11秒前
张张发布了新的文献求助10
11秒前
是菜团子呀完成签到 ,获得积分10
12秒前
css1997完成签到 ,获得积分10
13秒前
15秒前
曾经易烟完成签到,获得积分20
15秒前
17秒前
17秒前
科目三应助张张采纳,获得10
18秒前
wam关闭了wam文献求助
18秒前
小盖发布了新的文献求助10
20秒前
21秒前
21秒前
科研通AI6应助喵晓懒采纳,获得10
21秒前
科研小巴发布了新的文献求助10
22秒前
BruceZh完成签到,获得积分10
24秒前
小蘑菇完成签到,获得积分10
24秒前
小盖完成签到,获得积分10
25秒前
务实的千风完成签到,获得积分10
27秒前
hxt发布了新的文献求助50
27秒前
sj发布了新的文献求助10
27秒前
pual完成签到,获得积分10
29秒前
易夜雨居完成签到 ,获得积分10
29秒前
昌莆完成签到 ,获得积分10
31秒前
健忘浩宇完成签到,获得积分10
32秒前
科研通AI6应助sensen采纳,获得10
34秒前
Criminology34应助务实的千风采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875