MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients

偏头痛 医学 接收机工作特性 光环 先兆偏头痛 灰色(单位) 导水管周围灰质 慢性偏头痛 特征选择 人工智能 放射科 内科学 计算机科学 中枢神经系统 中脑
作者
Ismail Mese,Rahşan Karacı,Ceylan Altintas Taslicay,Cengizhan Taslicay,Gür Akansel,Saime Füsun Mayda Domaç
出处
期刊:Ideggyogyaszati Szemle-clinical Neuroscience [LITERATURA MEDICA]
卷期号:77 (1-2): 39-49
标识
DOI:10.18071/isz.77.0039
摘要

Background and purpose – The aim of the study was to investigate the question: Can MRI radiomics analysis of the periaqueductal gray region elucidate the pathophysiological mechanisms underlying various migraine subtypes, and can a machine learning model using these radiomics features accurately differentiate between migraine patients and healthy individuals, as well as between migraine subtypes, including atypical cases with overlapping symptoms? Methods – The study analyzed initial MRI images of individuals taken after their first migraine diagnosis, and additional MRI scans were acquired from healthy subjects. Radiomics modeling was applied to analyze all the MRI images in the periaqueductal gray region. The dataset was randomized, and oversampling was used if there was class imbalance between groups. The optimal algorithm-based feature selection method was employed to select the most important 5-10 features to differentiate between the two groups. The classification performance of AI algorithms was evaluated using receiver operating characteristic analysis to calculate the area under the curve, classification accuracy, sensitivity, and specificity values. Participants were required to have a confirmed diagnosis of either episodic migraine, probable migraine, or chronic migraine. Patients with aura, those who used migraine-preventive medication within the past six months, or had chronic illnesses, psychiatric disorders, cerebrovascular conditions, neoplastic diseases, or other headache types were excluded from the study. Additionally, 102 healthy subjects who met the inclusion and exclusion criteria were included. Results – The algorithm-based information gain method for feature reduction had the best performance among all methods, with the first-order, gray-level size zone matrix, and gray-level co-occurrence matrix classes being the dominant feature classes. The machine learning model correctly classified 82.4% of migraine patients from healthy subjects. Within the migraine group, 74.1% of the episodic migraine-probable migraine patients and 90.5% of the chronic migraine patients were accurately classified. No significant difference was found between probable migraine and episodic migraine patients in terms of the periaqueductal gray region radiomics features. The kNN algorithm showed the best performance for classifying episodic migraine-probable migraine subtypes, while the Random Forest algorithm demonstrated the best performance for classifying the migraine group and chronic migraine subtype. Conclusion – A radiomics-based machine learning model, utilizing standard MR images obtained during the diagnosis and followup of migraine patients, shows promise not only in aiding migraine diagnosis and classification for clinical approach, but also in understanding the neurological mechanisms underlying migraines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pzh发布了新的文献求助10
1秒前
贝利亚发布了新的文献求助10
2秒前
1111完成签到,获得积分10
2秒前
2秒前
李大胖胖完成签到 ,获得积分10
3秒前
3秒前
奋斗的初丹关注了科研通微信公众号
4秒前
4秒前
maidavy发布了新的文献求助10
4秒前
bbible完成签到 ,获得积分10
4秒前
Smile完成签到,获得积分10
5秒前
共享精神应助执着的忆曼采纳,获得20
5秒前
5秒前
phd_cheng发布了新的文献求助10
6秒前
传奇3应助小雨采纳,获得10
6秒前
华仔应助复杂曼梅采纳,获得10
6秒前
佳佳完成签到,获得积分10
8秒前
8秒前
MING完成签到 ,获得积分10
8秒前
潇洒完成签到,获得积分10
9秒前
ddly完成签到,获得积分10
9秒前
jie发布了新的文献求助10
10秒前
Ilan完成签到,获得积分10
10秒前
11秒前
小淘气发布了新的文献求助10
12秒前
千空发布了新的文献求助10
12秒前
12秒前
不知名的呆毛给不知名的呆毛的求助进行了留言
12秒前
能干土豆关注了科研通微信公众号
13秒前
13秒前
CipherSage应助yajun采纳,获得10
13秒前
希望天下0贩的0应助花花采纳,获得10
14秒前
14秒前
黎野完成签到,获得积分10
14秒前
HW发布了新的文献求助10
14秒前
吴开珍完成签到 ,获得积分10
15秒前
15秒前
Albert发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270740
求助须知:如何正确求助?哪些是违规求助? 4428811
关于积分的说明 13786039
捐赠科研通 4306719
什么是DOI,文献DOI怎么找? 2363198
邀请新用户注册赠送积分活动 1358900
关于科研通互助平台的介绍 1321814