亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients

偏头痛 医学 接收机工作特性 光环 先兆偏头痛 灰色(单位) 导水管周围灰质 慢性偏头痛 特征选择 人工智能 放射科 内科学 计算机科学 中枢神经系统 中脑
作者
Ismail Mese,Rahşan Karacı,Ceylan Altintas Taslicay,Cengizhan Taslicay,Gür Akansel,Saime Füsun Mayda Domaç
出处
期刊:Ideggyogyaszati Szemle-clinical Neuroscience [Ideggyogyaszati Szemle Journal]
卷期号:77 (1-2): 39-49
标识
DOI:10.18071/isz.77.0039
摘要

Background and purpose – The aim of the study was to investigate the question: Can MRI radiomics analysis of the periaqueductal gray region elucidate the pathophysiological mechanisms underlying various migraine subtypes, and can a machine learning model using these radiomics features accurately differentiate between migraine patients and healthy individuals, as well as between migraine subtypes, including atypical cases with overlapping symptoms? Methods – The study analyzed initial MRI images of individuals taken after their first migraine diagnosis, and additional MRI scans were acquired from healthy subjects. Radiomics modeling was applied to analyze all the MRI images in the periaqueductal gray region. The dataset was randomized, and oversampling was used if there was class imbalance between groups. The optimal algorithm-based feature selection method was employed to select the most important 5-10 features to differentiate between the two groups. The classification performance of AI algorithms was evaluated using receiver operating characteristic analysis to calculate the area under the curve, classification accuracy, sensitivity, and specificity values. Participants were required to have a confirmed diagnosis of either episodic migraine, probable migraine, or chronic migraine. Patients with aura, those who used migraine-preventive medication within the past six months, or had chronic illnesses, psychiatric disorders, cerebrovascular conditions, neoplastic diseases, or other headache types were excluded from the study. Additionally, 102 healthy subjects who met the inclusion and exclusion criteria were included. Results – The algorithm-based information gain method for feature reduction had the best performance among all methods, with the first-order, gray-level size zone matrix, and gray-level co-occurrence matrix classes being the dominant feature classes. The machine learning model correctly classified 82.4% of migraine patients from healthy subjects. Within the migraine group, 74.1% of the episodic migraine-probable migraine patients and 90.5% of the chronic migraine patients were accurately classified. No significant difference was found between probable migraine and episodic migraine patients in terms of the periaqueductal gray region radiomics features. The kNN algorithm showed the best performance for classifying episodic migraine-probable migraine subtypes, while the Random Forest algorithm demonstrated the best performance for classifying the migraine group and chronic migraine subtype. Conclusion – A radiomics-based machine learning model, utilizing standard MR images obtained during the diagnosis and followup of migraine patients, shows promise not only in aiding migraine diagnosis and classification for clinical approach, but also in understanding the neurological mechanisms underlying migraines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿里发布了新的文献求助30
4秒前
10秒前
36秒前
pengpengyin发布了新的文献求助10
41秒前
咔敏完成签到,获得积分10
49秒前
咔敏发布了新的文献求助10
53秒前
pengpengyin完成签到,获得积分10
1分钟前
1分钟前
小二郎应助七安得安采纳,获得30
1分钟前
平常囧完成签到,获得积分10
1分钟前
李健应助跳跃的小之采纳,获得10
2分钟前
2分钟前
2分钟前
火速阿百川完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
奶油蜜豆卷完成签到,获得积分10
2分钟前
浮曳完成签到,获得积分10
3分钟前
iShine完成签到 ,获得积分10
3分钟前
顺心蜜粉发布了新的文献求助10
3分钟前
4分钟前
寻道图强应助顺心蜜粉采纳,获得100
4分钟前
七安得安发布了新的文献求助30
4分钟前
上官若男应助七安得安采纳,获得10
4分钟前
大胆砖头完成签到 ,获得积分10
4分钟前
4分钟前
七安得安发布了新的文献求助10
5分钟前
七安得安完成签到,获得积分10
5分钟前
手可摘星陈同学完成签到 ,获得积分10
5分钟前
5分钟前
黄油小熊完成签到 ,获得积分10
5分钟前
Luke发布了新的文献求助10
5分钟前
盼盼完成签到 ,获得积分10
6分钟前
科研辣鸡发布了新的文献求助10
6分钟前
7分钟前
7分钟前
知悉发布了新的文献求助10
7分钟前
知悉完成签到,获得积分10
7分钟前
samchen完成签到,获得积分10
8分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064