亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients

偏头痛 医学 接收机工作特性 光环 先兆偏头痛 灰色(单位) 导水管周围灰质 慢性偏头痛 特征选择 人工智能 放射科 内科学 计算机科学 中脑 中枢神经系统
作者
Ismail Mese,Rahşan Karacı,Ceylan Altintas Taslicay,Cengizhan Taslicay,Gür Akansel,Saime Füsun Mayda Domaç
出处
期刊:Ideggyogyaszati Szemle-clinical Neuroscience [Ideggyogyaszati Szemle Journal]
卷期号:77 (1-2): 39-49
标识
DOI:10.18071/isz.77.0039
摘要

Background and purpose – The aim of the study was to investigate the question: Can MRI radiomics analysis of the periaqueductal gray region elucidate the pathophysiological mechanisms underlying various migraine subtypes, and can a machine learning model using these radiomics features accurately differentiate between migraine patients and healthy individuals, as well as between migraine subtypes, including atypical cases with overlapping symptoms? Methods – The study analyzed initial MRI images of individuals taken after their first migraine diagnosis, and additional MRI scans were acquired from healthy subjects. Radiomics modeling was applied to analyze all the MRI images in the periaqueductal gray region. The dataset was randomized, and oversampling was used if there was class imbalance between groups. The optimal algorithm-based feature selection method was employed to select the most important 5-10 features to differentiate between the two groups. The classification performance of AI algorithms was evaluated using receiver operating characteristic analysis to calculate the area under the curve, classification accuracy, sensitivity, and specificity values. Participants were required to have a confirmed diagnosis of either episodic migraine, probable migraine, or chronic migraine. Patients with aura, those who used migraine-preventive medication within the past six months, or had chronic illnesses, psychiatric disorders, cerebrovascular conditions, neoplastic diseases, or other headache types were excluded from the study. Additionally, 102 healthy subjects who met the inclusion and exclusion criteria were included. Results – The algorithm-based information gain method for feature reduction had the best performance among all methods, with the first-order, gray-level size zone matrix, and gray-level co-occurrence matrix classes being the dominant feature classes. The machine learning model correctly classified 82.4% of migraine patients from healthy subjects. Within the migraine group, 74.1% of the episodic migraine-probable migraine patients and 90.5% of the chronic migraine patients were accurately classified. No significant difference was found between probable migraine and episodic migraine patients in terms of the periaqueductal gray region radiomics features. The kNN algorithm showed the best performance for classifying episodic migraine-probable migraine subtypes, while the Random Forest algorithm demonstrated the best performance for classifying the migraine group and chronic migraine subtype. Conclusion – A radiomics-based machine learning model, utilizing standard MR images obtained during the diagnosis and followup of migraine patients, shows promise not only in aiding migraine diagnosis and classification for clinical approach, but also in understanding the neurological mechanisms underlying migraines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
4秒前
光轮2000发布了新的文献求助10
7秒前
清修完成签到,获得积分10
30秒前
zoes完成签到 ,获得积分10
49秒前
maprang完成签到,获得积分10
57秒前
maprang发布了新的文献求助20
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
apriltsy发布了新的文献求助10
1分钟前
糯糯汤圆完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
狂野的白秋关注了科研通微信公众号
2分钟前
2分钟前
3分钟前
池雨发布了新的文献求助10
3分钟前
yuan完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
萝卜完成签到,获得积分10
3分钟前
萝卜发布了新的文献求助10
3分钟前
3分钟前
宇称yu完成签到 ,获得积分10
3分钟前
摇叶发布了新的文献求助30
3分钟前
maher完成签到,获得积分10
3分钟前
hhq完成签到 ,获得积分10
3分钟前
YujieJin发布了新的文献求助10
4分钟前
冷傲迎梅完成签到 ,获得积分10
4分钟前
4分钟前
糯糯汤圆发布了新的文献求助10
4分钟前
YujieJin完成签到,获得积分10
4分钟前
4分钟前
FashionBoy应助坦率访梦采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498336
求助须知:如何正确求助?哪些是违规求助? 4595591
关于积分的说明 14449481
捐赠科研通 4528384
什么是DOI,文献DOI怎么找? 2481460
邀请新用户注册赠送积分活动 1465593
关于科研通互助平台的介绍 1438350