MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients

偏头痛 医学 接收机工作特性 光环 先兆偏头痛 灰色(单位) 导水管周围灰质 慢性偏头痛 特征选择 人工智能 放射科 内科学 计算机科学 中枢神经系统 中脑
作者
Ismail Mese,Rahşan Karacı,Ceylan Altintas Taslicay,Cengizhan Taslicay,Gür Akansel,Saime Füsun Mayda Domaç
出处
期刊:Ideggyogyaszati Szemle-clinical Neuroscience [Ideggyogyaszati Szemle Journal]
卷期号:77 (1-2): 39-49
标识
DOI:10.18071/isz.77.0039
摘要

Background and purpose – The aim of the study was to investigate the question: Can MRI radiomics analysis of the periaqueductal gray region elucidate the pathophysiological mechanisms underlying various migraine subtypes, and can a machine learning model using these radiomics features accurately differentiate between migraine patients and healthy individuals, as well as between migraine subtypes, including atypical cases with overlapping symptoms? Methods – The study analyzed initial MRI images of individuals taken after their first migraine diagnosis, and additional MRI scans were acquired from healthy subjects. Radiomics modeling was applied to analyze all the MRI images in the periaqueductal gray region. The dataset was randomized, and oversampling was used if there was class imbalance between groups. The optimal algorithm-based feature selection method was employed to select the most important 5-10 features to differentiate between the two groups. The classification performance of AI algorithms was evaluated using receiver operating characteristic analysis to calculate the area under the curve, classification accuracy, sensitivity, and specificity values. Participants were required to have a confirmed diagnosis of either episodic migraine, probable migraine, or chronic migraine. Patients with aura, those who used migraine-preventive medication within the past six months, or had chronic illnesses, psychiatric disorders, cerebrovascular conditions, neoplastic diseases, or other headache types were excluded from the study. Additionally, 102 healthy subjects who met the inclusion and exclusion criteria were included. Results – The algorithm-based information gain method for feature reduction had the best performance among all methods, with the first-order, gray-level size zone matrix, and gray-level co-occurrence matrix classes being the dominant feature classes. The machine learning model correctly classified 82.4% of migraine patients from healthy subjects. Within the migraine group, 74.1% of the episodic migraine-probable migraine patients and 90.5% of the chronic migraine patients were accurately classified. No significant difference was found between probable migraine and episodic migraine patients in terms of the periaqueductal gray region radiomics features. The kNN algorithm showed the best performance for classifying episodic migraine-probable migraine subtypes, while the Random Forest algorithm demonstrated the best performance for classifying the migraine group and chronic migraine subtype. Conclusion – A radiomics-based machine learning model, utilizing standard MR images obtained during the diagnosis and followup of migraine patients, shows promise not only in aiding migraine diagnosis and classification for clinical approach, but also in understanding the neurological mechanisms underlying migraines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
silentforsure发布了新的文献求助10
1秒前
wanci应助忧虑的翅膀采纳,获得10
2秒前
ChenYX发布了新的文献求助10
3秒前
3秒前
浮游应助测控采纳,获得10
3秒前
Haijiao完成签到,获得积分10
4秒前
梓然完成签到,获得积分10
4秒前
标致的山菡完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助谦让的落雁采纳,获得10
5秒前
小石完成签到,获得积分10
5秒前
ding应助LW采纳,获得10
6秒前
6秒前
我是老大应助光亮靖琪采纳,获得10
6秒前
时尚的小天鹅完成签到,获得积分10
8秒前
好家伙完成签到,获得积分10
8秒前
好久不见完成签到,获得积分10
8秒前
8秒前
充电宝应助林狗采纳,获得10
9秒前
9秒前
宁紫涵完成签到,获得积分10
9秒前
为什么不能免费完成签到,获得积分10
9秒前
9秒前
10秒前
wanci应助搞怪的之云采纳,获得10
11秒前
郑鹏飞发布了新的文献求助10
11秒前
lsy发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
red发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
Misty发布了新的文献求助10
13秒前
13秒前
浮游应助测控采纳,获得10
14秒前
RS6发布了新的文献求助10
14秒前
十八完成签到 ,获得积分10
15秒前
正己化人应助扶桑采纳,获得10
16秒前
李某某应助搞怪元彤采纳,获得30
16秒前
k_1发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578007
求助须知:如何正确求助?哪些是违规求助? 4663017
关于积分的说明 14744201
捐赠科研通 4603681
什么是DOI,文献DOI怎么找? 2526640
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465642