清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Background covariance discriminative dictionary learning for hyperspectral target detection

高光谱成像 判别式 协方差 人工智能 模式识别(心理学) 计算机科学 地理 机器学习 数学 统计
作者
Zhiyuan Li,Tingkui Mu,Bin Wang,Tingkui Mu,Haishan Dai
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103751-103751
标识
DOI:10.1016/j.jag.2024.103751
摘要

Hyperspectral target detection (HTD) aims to identifying targets within a hyperspectral image (HSI) based on provided target spectra. In the current HTD field, representation-based detectors have attracted much attention. However, there are two prominent challenges that are particularly noteworthy. First, the background class encompasses diverse land covers, making its accurate representation challenging. Second, the detection ability can be significantly influenced by the abnormalities and noise in HSI. To tackle these concerns, we propose a novel background covariance discriminative dictionary learning (BCDDL) model for HTD. To enhance the background representation ability and overcome the sparse noise, we combine the dictionary learning with spectral covariance descriptors and undertake background reconstruction in regional scale. Specifically, the input HSI is pre-processed into superpixels, the spectral covariance of each superpixel is used to provide a compact and flexible description of local regional statistical properties. Further, a novel spatial clustering-based dictionary learning method is proposed to learn the background discriminative covariances dictionary. The collaborative representation model within symmetric positive definite (SPD) manifold is utilized to reconstruct background region and get the residual. By merging the background residual with pixel-wise target reconstruction residual, we derive final detection output. Comprehensive experiments on two public hyperspectral datasets and two novel GaoFen-5 datasets demonstrate the superiority of our BCDDL approach over 10 state-of-the-art methods, especially in terms of suppressing background.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
8秒前
mashibeo完成签到,获得积分10
16秒前
大熊完成签到 ,获得积分10
18秒前
32秒前
xun发布了新的文献求助10
37秒前
xun完成签到,获得积分20
46秒前
chcmy完成签到 ,获得积分0
48秒前
1分钟前
fireking_sid完成签到,获得积分10
1分钟前
昨夜梦星河完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
虚幻元风完成签到 ,获得积分10
2分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
gszy1975完成签到,获得积分10
4分钟前
Panini完成签到 ,获得积分10
4分钟前
4分钟前
HHH完成签到 ,获得积分10
5分钟前
明理从露完成签到 ,获得积分10
5分钟前
沿途有你完成签到 ,获得积分10
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
zjspidany应助幻梦如歌采纳,获得10
6分钟前
zcydbttj2011完成签到 ,获得积分10
7分钟前
故渊完成签到,获得积分10
7分钟前
北国雪未消完成签到 ,获得积分10
7分钟前
ccc完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
宇心应助科研通管家采纳,获得10
8分钟前
江三村完成签到 ,获得积分10
8分钟前
Wang完成签到 ,获得积分20
9分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
所所应助科研通管家采纳,获得10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314426
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622422
什么是DOI,文献DOI怎么找? 1434534
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881