Background covariance discriminative dictionary learning for hyperspectral target detection

高光谱成像 判别式 协方差 人工智能 模式识别(心理学) 计算机科学 地理 机器学习 数学 统计
作者
Zhiyuan Li,Tingkui Mu,Bin Wang,Tingkui Mu,Haishan Dai
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103751-103751
标识
DOI:10.1016/j.jag.2024.103751
摘要

Hyperspectral target detection (HTD) aims to identifying targets within a hyperspectral image (HSI) based on provided target spectra. In the current HTD field, representation-based detectors have attracted much attention. However, there are two prominent challenges that are particularly noteworthy. First, the background class encompasses diverse land covers, making its accurate representation challenging. Second, the detection ability can be significantly influenced by the abnormalities and noise in HSI. To tackle these concerns, we propose a novel background covariance discriminative dictionary learning (BCDDL) model for HTD. To enhance the background representation ability and overcome the sparse noise, we combine the dictionary learning with spectral covariance descriptors and undertake background reconstruction in regional scale. Specifically, the input HSI is pre-processed into superpixels, the spectral covariance of each superpixel is used to provide a compact and flexible description of local regional statistical properties. Further, a novel spatial clustering-based dictionary learning method is proposed to learn the background discriminative covariances dictionary. The collaborative representation model within symmetric positive definite (SPD) manifold is utilized to reconstruct background region and get the residual. By merging the background residual with pixel-wise target reconstruction residual, we derive final detection output. Comprehensive experiments on two public hyperspectral datasets and two novel GaoFen-5 datasets demonstrate the superiority of our BCDDL approach over 10 state-of-the-art methods, especially in terms of suppressing background.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥泞完成签到 ,获得积分10
1秒前
tcf应助jie采纳,获得10
2秒前
静心龙完成签到,获得积分10
4秒前
ling_lz完成签到,获得积分10
6秒前
矜持完成签到 ,获得积分10
6秒前
灵巧的寄真完成签到 ,获得积分10
7秒前
huayi完成签到,获得积分10
8秒前
8秒前
fFFF发布了新的文献求助10
10秒前
俊秀的思山完成签到,获得积分10
10秒前
11秒前
健壮洋葱完成签到 ,获得积分10
15秒前
adelalady完成签到,获得积分10
15秒前
冷酷孤风发布了新的文献求助10
16秒前
乔凌云完成签到 ,获得积分10
16秒前
17秒前
20秒前
20秒前
chengxu完成签到,获得积分10
20秒前
Vme50完成签到,获得积分10
20秒前
一昂羊发布了新的文献求助10
21秒前
好好吃饭完成签到 ,获得积分10
22秒前
CHBW发布了新的文献求助10
23秒前
chengxu发布了新的文献求助10
23秒前
23秒前
壮观若南发布了新的文献求助10
23秒前
妩媚的海应助rslc采纳,获得10
24秒前
qsmei2020完成签到,获得积分10
24秒前
欧耶欧椰完成签到 ,获得积分10
25秒前
余额完成签到,获得积分10
28秒前
坚强的红牛完成签到 ,获得积分10
29秒前
30秒前
苹果丝完成签到 ,获得积分10
30秒前
西瓜妹发布了新的文献求助10
31秒前
w婷完成签到 ,获得积分0
33秒前
畅快的长颈鹿完成签到,获得积分10
34秒前
糖果反馈应助他叫塞拉囧采纳,获得10
34秒前
糖果反馈应助他叫塞拉囧采纳,获得10
34秒前
fangang发布了新的文献求助30
34秒前
Daybreak发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650166
关于积分的说明 14690040
捐赠科研通 4592004
什么是DOI,文献DOI怎么找? 2519432
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159