已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Background covariance discriminative dictionary learning for hyperspectral target detection

高光谱成像 判别式 协方差 人工智能 模式识别(心理学) 计算机科学 地理 机器学习 数学 统计
作者
Zhiyuan Li,Tingkui Mu,Bin Wang,Tingkui Mu,Haishan Dai
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103751-103751
标识
DOI:10.1016/j.jag.2024.103751
摘要

Hyperspectral target detection (HTD) aims to identifying targets within a hyperspectral image (HSI) based on provided target spectra. In the current HTD field, representation-based detectors have attracted much attention. However, there are two prominent challenges that are particularly noteworthy. First, the background class encompasses diverse land covers, making its accurate representation challenging. Second, the detection ability can be significantly influenced by the abnormalities and noise in HSI. To tackle these concerns, we propose a novel background covariance discriminative dictionary learning (BCDDL) model for HTD. To enhance the background representation ability and overcome the sparse noise, we combine the dictionary learning with spectral covariance descriptors and undertake background reconstruction in regional scale. Specifically, the input HSI is pre-processed into superpixels, the spectral covariance of each superpixel is used to provide a compact and flexible description of local regional statistical properties. Further, a novel spatial clustering-based dictionary learning method is proposed to learn the background discriminative covariances dictionary. The collaborative representation model within symmetric positive definite (SPD) manifold is utilized to reconstruct background region and get the residual. By merging the background residual with pixel-wise target reconstruction residual, we derive final detection output. Comprehensive experiments on two public hyperspectral datasets and two novel GaoFen-5 datasets demonstrate the superiority of our BCDDL approach over 10 state-of-the-art methods, especially in terms of suppressing background.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼败完成签到 ,获得积分10
1秒前
小白白发布了新的文献求助10
11秒前
龙王爱吃糖完成签到 ,获得积分10
12秒前
酷波er应助duobao鱼采纳,获得10
15秒前
18秒前
鲤鱼安青完成签到 ,获得积分10
18秒前
Cosmosurfer完成签到,获得积分10
20秒前
寒雪完成签到,获得积分10
21秒前
笑点低紊发布了新的文献求助20
21秒前
in完成签到 ,获得积分10
24秒前
25秒前
pinklay完成签到 ,获得积分10
29秒前
邓佳鑫Alan应助狂野忆文采纳,获得10
29秒前
科研通AI2S应助狂野忆文采纳,获得10
29秒前
SYLH应助狂野忆文采纳,获得10
29秒前
SYLH应助狂野忆文采纳,获得10
29秒前
SYLH应助狂野忆文采纳,获得10
36秒前
SYLH应助狂野忆文采纳,获得10
36秒前
SYLH应助狂野忆文采纳,获得10
36秒前
SYLH应助狂野忆文采纳,获得10
36秒前
SYLH应助狂野忆文采纳,获得10
36秒前
科研通AI2S应助狂野忆文采纳,获得10
36秒前
扎心应助狂野忆文采纳,获得10
36秒前
扎心应助狂野忆文采纳,获得10
37秒前
科研通AI2S应助狂野忆文采纳,获得10
37秒前
充电宝应助狂野忆文采纳,获得10
37秒前
战战兢兢完成签到 ,获得积分10
45秒前
小宇完成签到 ,获得积分10
51秒前
华仔应助幽悠梦儿采纳,获得10
53秒前
jnoker完成签到 ,获得积分10
54秒前
要好好看文献完成签到,获得积分10
57秒前
RSU完成签到,获得积分10
59秒前
Owen应助阿尼采纳,获得10
59秒前
666666666666666完成签到 ,获得积分10
1分钟前
李健的小迷弟应助六沉采纳,获得10
1分钟前
1分钟前
Nakacoke77完成签到,获得积分10
1分钟前
yingying完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176