Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application

Hopfield网络 计算机科学 人工神经网络 混乱的 爆裂 李雅普诺夫指数 激活函数 吸引子 相图 分叉 拓扑(电路) 人工智能 物理 数学 非线性系统 神经科学 生物 组合数学 数学分析 量子力学
作者
Quanli Deng,Chunhua Wang,Hairong Lin
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:178: 114387-114387 被引量:67
标识
DOI:10.1016/j.chaos.2023.114387
摘要

Activation functions play a crucial in emulating biological neurons within artificial neural networks. However, the exploration of neural networks composed of various activation functions and their associated dynamics have not been noticed yet. This paper proposes a novel method by introducing heterogeneous activation functions into a memristive Hopfield neural network for the first time. The special feature of the proposed model lies not only in its ability to mimic the diversity of brain neurons, providing a more realistic and adaptable frame for artificial neural networks but also in its rich dynamic properties suitable for engineering applications. Theoretical and experimental investigations into the dynamics of the memristive Hopfield neural network are conducted, employing phase portraits, bifurcation diagrams, Lyapunov exponent spectra, 0–1 tests, and bi-parameter dynamic maps. Complex dynamical behaviors, including periodic bursting, chaotic bursting, and chaotic state jump are revealed by the numerical simulations. Furthermore, a hardware implementation of the proposed neural network is designed and validated through circuit simulation software, which is consistent with the numerical simulation and confirms the validity of the proposed model. Finally, an encryption scheme based on the chaotic bursting is also proposed and evaluated. Results demonstrate that the chaotic bursting attractor exhibits excellent randomness, making it well-suited for image encryption applications. The novel exploration of heterogeneous activation neuronal networks in this paper may pave the way for further research in the field of more bionic networks with complex dynamical behaviors and their applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助瘦瘦慕凝采纳,获得10
刚刚
Shirky发布了新的文献求助10
刚刚
1秒前
后知后觉发布了新的文献求助10
1秒前
液氧完成签到,获得积分10
2秒前
2秒前
一事无成的研一完成签到 ,获得积分10
2秒前
大个应助张豪杰采纳,获得10
3秒前
星辰大海应助shiyan_39采纳,获得10
4秒前
CipherSage应助Joyce采纳,获得10
4秒前
聪慧小霜应助leon采纳,获得10
4秒前
乔杰发布了新的文献求助10
5秒前
www发布了新的文献求助10
5秒前
laurina发布了新的文献求助10
5秒前
ljy发布了新的文献求助10
5秒前
yin完成签到,获得积分10
5秒前
大鑫完成签到,获得积分10
5秒前
su发布了新的文献求助10
6秒前
wxxin发布了新的文献求助10
6秒前
7秒前
meng完成签到,获得积分10
8秒前
英雷完成签到,获得积分10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
蓝色飞鸟应助科研通管家采纳,获得10
8秒前
wangdii应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
LaTeXer应助科研通管家采纳,获得30
9秒前
missme应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
lunar完成签到 ,获得积分10
9秒前
可玩性完成签到 ,获得积分10
9秒前
鸣笛应助科研通管家采纳,获得20
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585514
求助须知:如何正确求助?哪些是违规求助? 4002204
关于积分的说明 12389666
捐赠科研通 3678349
什么是DOI,文献DOI怎么找? 2027265
邀请新用户注册赠送积分活动 1060773
科研通“疑难数据库(出版商)”最低求助积分说明 947278