Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application

Hopfield网络 计算机科学 人工神经网络 混乱的 爆裂 李雅普诺夫指数 激活函数 吸引子 相图 分叉 拓扑(电路) 人工智能 物理 数学 非线性系统 神经科学 生物 组合数学 数学分析 量子力学
作者
Quanli Deng,Chunhua Wang,Hairong Lin
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:178: 114387-114387 被引量:49
标识
DOI:10.1016/j.chaos.2023.114387
摘要

Activation functions play a crucial in emulating biological neurons within artificial neural networks. However, the exploration of neural networks composed of various activation functions and their associated dynamics have not been noticed yet. This paper proposes a novel method by introducing heterogeneous activation functions into a memristive Hopfield neural network for the first time. The special feature of the proposed model lies not only in its ability to mimic the diversity of brain neurons, providing a more realistic and adaptable frame for artificial neural networks but also in its rich dynamic properties suitable for engineering applications. Theoretical and experimental investigations into the dynamics of the memristive Hopfield neural network are conducted, employing phase portraits, bifurcation diagrams, Lyapunov exponent spectra, 0–1 tests, and bi-parameter dynamic maps. Complex dynamical behaviors, including periodic bursting, chaotic bursting, and chaotic state jump are revealed by the numerical simulations. Furthermore, a hardware implementation of the proposed neural network is designed and validated through circuit simulation software, which is consistent with the numerical simulation and confirms the validity of the proposed model. Finally, an encryption scheme based on the chaotic bursting is also proposed and evaluated. Results demonstrate that the chaotic bursting attractor exhibits excellent randomness, making it well-suited for image encryption applications. The novel exploration of heterogeneous activation neuronal networks in this paper may pave the way for further research in the field of more bionic networks with complex dynamical behaviors and their applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焱垚完成签到,获得积分10
刚刚
姓张发布了新的文献求助10
刚刚
苹果小蜜蜂完成签到,获得积分10
1秒前
1秒前
1秒前
难度完成签到,获得积分10
2秒前
xueliang完成签到,获得积分10
2秒前
Mila完成签到,获得积分10
2秒前
接受所有饼干完成签到,获得积分10
2秒前
zunzun发布了新的文献求助10
2秒前
sushx完成签到,获得积分10
2秒前
浮槎完成签到,获得积分10
3秒前
3秒前
深情安青应助旗树树采纳,获得10
3秒前
rainhowk完成签到,获得积分10
4秒前
谦让的夜春完成签到,获得积分10
4秒前
XX完成签到,获得积分10
4秒前
Hustle完成签到,获得积分20
5秒前
6秒前
自觉画笔完成签到 ,获得积分10
6秒前
mia发布了新的文献求助10
6秒前
Owen应助缓慢千易采纳,获得10
6秒前
鹿鹤完成签到,获得积分10
7秒前
听蝉完成签到,获得积分10
7秒前
Nextone完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
kohu完成签到,获得积分10
9秒前
乐乐应助阳生采纳,获得10
9秒前
9秒前
兜兜窦完成签到,获得积分10
9秒前
9秒前
LG完成签到,获得积分10
9秒前
Xuan完成签到,获得积分10
9秒前
彭于晏应助bonnie采纳,获得10
10秒前
tent01完成签到,获得积分10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957265
求助须知:如何正确求助?哪些是违规求助? 3503314
关于积分的说明 11112746
捐赠科研通 3234499
什么是DOI,文献DOI怎么找? 1787911
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330