Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application

Hopfield网络 计算机科学 人工神经网络 混乱的 爆裂 李雅普诺夫指数 激活函数 吸引子 相图 分叉 拓扑(电路) 人工智能 物理 数学 非线性系统 神经科学 生物 组合数学 数学分析 量子力学
作者
Quanli Deng,Chunhua Wang,Hairong Lin
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:178: 114387-114387 被引量:49
标识
DOI:10.1016/j.chaos.2023.114387
摘要

Activation functions play a crucial in emulating biological neurons within artificial neural networks. However, the exploration of neural networks composed of various activation functions and their associated dynamics have not been noticed yet. This paper proposes a novel method by introducing heterogeneous activation functions into a memristive Hopfield neural network for the first time. The special feature of the proposed model lies not only in its ability to mimic the diversity of brain neurons, providing a more realistic and adaptable frame for artificial neural networks but also in its rich dynamic properties suitable for engineering applications. Theoretical and experimental investigations into the dynamics of the memristive Hopfield neural network are conducted, employing phase portraits, bifurcation diagrams, Lyapunov exponent spectra, 0–1 tests, and bi-parameter dynamic maps. Complex dynamical behaviors, including periodic bursting, chaotic bursting, and chaotic state jump are revealed by the numerical simulations. Furthermore, a hardware implementation of the proposed neural network is designed and validated through circuit simulation software, which is consistent with the numerical simulation and confirms the validity of the proposed model. Finally, an encryption scheme based on the chaotic bursting is also proposed and evaluated. Results demonstrate that the chaotic bursting attractor exhibits excellent randomness, making it well-suited for image encryption applications. The novel exploration of heterogeneous activation neuronal networks in this paper may pave the way for further research in the field of more bionic networks with complex dynamical behaviors and their applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zheng完成签到 ,获得积分10
刚刚
Zeeki完成签到 ,获得积分10
1秒前
清秀不言完成签到 ,获得积分10
5秒前
LTJ完成签到,获得积分10
5秒前
852应助失眠的晓露采纳,获得10
8秒前
8秒前
jjj完成签到 ,获得积分10
8秒前
BettyNie完成签到 ,获得积分10
8秒前
汶溢完成签到,获得积分10
9秒前
topsun完成签到,获得积分10
10秒前
ming完成签到 ,获得积分10
11秒前
12秒前
平淡的寄风完成签到,获得积分10
13秒前
yzxzdm完成签到 ,获得积分10
14秒前
Zfx完成签到,获得积分10
15秒前
destiny完成签到 ,获得积分10
15秒前
16秒前
huichuanyin完成签到 ,获得积分10
16秒前
圈圈黄完成签到,获得积分10
16秒前
17秒前
King完成签到,获得积分10
17秒前
涂涂完成签到 ,获得积分10
19秒前
Allen完成签到,获得积分10
20秒前
Curry完成签到 ,获得积分10
21秒前
yamoon完成签到,获得积分10
22秒前
瑶瑶公主会刷盾完成签到 ,获得积分10
22秒前
22秒前
小巧的怜晴完成签到,获得积分10
23秒前
佟碧玉完成签到,获得积分10
24秒前
欣喜的缘分完成签到 ,获得积分10
25秒前
dunhuang完成签到,获得积分10
25秒前
26秒前
一一完成签到,获得积分10
27秒前
张爱学发布了新的文献求助10
27秒前
天明完成签到,获得积分10
27秒前
看文献完成签到,获得积分10
28秒前
dlut0407完成签到,获得积分10
28秒前
29秒前
河堤完成签到 ,获得积分10
30秒前
彩色完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944