Multi-parametric MRI-based radiomics for preoperative prediction of multiple biological characteristics in endometrial cancer

无线电技术 子宫内膜癌 医学 磁共振成像 放射科 医学物理学 癌症 肿瘤科 内科学
作者
Changjun Ma,Ying Zhao,Qingling Song,Xing Meng,Qihao Xu,Shifeng Tian,Lihua Chen,Nan Wang,Qingwei Song,Liangjie Lin,Jiazheng Wang,Ailian Liu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:2
标识
DOI:10.3389/fonc.2023.1280022
摘要

Purpose To develop and validate multi-parametric MRI (MP-MRI)-based radiomics models for the prediction of biological characteristics in endometrial cancer (EC). Methods A total of 292 patients with EC were divided into LVSI ( n = 208), DMI ( n = 292), MSI ( n = 95), and Her-2 ( n = 198) subsets. Total 2316 radiomics features were extracted from MP-MRI (T 2 WI, DWI, and ADC) images, and clinical factors (age, FIGO stage, differentiation degree, pathological type, menopausal state, and irregular vaginal bleeding) were included. Intra-class correlation coefficient (ICC), spearman’s rank correlation test, univariate logistic regression, and least absolute shrinkage and selection operator (LASSO) were used to select radiomics features; univariate and multivariate logistic regression were used to identify clinical independent risk factors. Five classifiers were applied (logistic regression, random forest, decision tree, K-nearest neighbor, and Bayes) to construct radiomics models for predicting biological characteristics. The clinical model was built based on the clinical independent risk factors. The combined model incorporating the radiomics score (radscore) and the clinical independent risk factors was constructed. The model was evaluated by ROC curve, calibration curve (H-L test), and decision curve analysis (DCA). Results In the training cohort, the RF radiomics model performed best among the five classifiers for the three subsets (MSI, LVSI, and DMI) according to AUC values (AUC MSI : 0.844; AUC LVSI : 0.952; AUC DMI : 0.840) except for Her-2 subset (Decision tree: AUC=0.714), and the combined model had higher AUC than the clinical model in each subset (MSI: AUC combined =0.907, AUC clinical =0.755; LVSI: AUC combined =0.959, AUC clinical =0.835; DMI: AUC combined = 0.883, AUC clinical =0.796; Her-2: AUC combined =0.812, AUC clinical =0.717; all P <0.05). Nevertheless, in the validation cohort, significant differences between the two models (combined vs. clinical model) were found only in the DMI and LVSI subsets (DMI: AUC combined =0.803, AUC clinical =0.698; LVSI: AUC combined =0.926, AUC clinical =0.796; all P <0.05). Conclusion The radiomics analysis based on MP-MRI and clinical independent risk factors can potentially predict multiple biological features of EC, including DMI, LVSI, MSI, and Her-2, and provide valuable guidance for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青鱼完成签到,获得积分10
刚刚
xx发布了新的文献求助10
1秒前
小马甲应助小夏采纳,获得10
1秒前
Active完成签到,获得积分10
2秒前
Jun完成签到 ,获得积分10
2秒前
黄义军发布了新的文献求助10
3秒前
lumcy发布了新的文献求助10
3秒前
4秒前
Xinxxx完成签到,获得积分10
4秒前
饺子完成签到,获得积分10
5秒前
逍遥小书生完成签到 ,获得积分10
5秒前
DKL完成签到,获得积分10
5秒前
CipherSage应助tesla采纳,获得10
6秒前
ssss发布了新的文献求助10
6秒前
Agernon应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Zn应助科研通管家采纳,获得10
7秒前
Zn应助科研通管家采纳,获得10
7秒前
sj完成签到,获得积分10
7秒前
7秒前
liu123479完成签到,获得积分10
7秒前
WIsh完成签到 ,获得积分10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
明亮的冰香完成签到 ,获得积分10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
April60应助科研通管家采纳,获得10
7秒前
Agernon应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
8秒前
mjr1227完成签到,获得积分10
8秒前
朴素海亦完成签到 ,获得积分10
8秒前
美丽傲霜完成签到 ,获得积分10
9秒前
Survive完成签到,获得积分10
10秒前
迟大猫应助shouyu29采纳,获得10
10秒前
苏卿应助黄义军采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912