反推
控制理论(社会学)
非线性系统
严格反馈表
自适应控制
国家(计算机科学)
控制(管理)
反馈控制
计算机科学
全状态反馈
数学
控制工程
工程类
物理
人工智能
算法
量子力学
作者
Yongming Li,Shaocheng Tong
出处
期刊:Automatica
[Elsevier]
日期:2024-02-13
卷期号:163: 111574-111574
被引量:9
标识
DOI:10.1016/j.automatica.2024.111574
摘要
This paper studies the problem of adaptive backstepping control with full state triggering for a class of parametric uncertain nonlinear systems. The use of triggering mechanism discretizes measured states, which causes the issue of nondifferentiation for virtual control signals and hinders the design of adaptive estimation mechanism for unknown parameters in the traditional backstepping design. To conquer the difficulties, a group of adaptive chainlike filters are designed to generate necessarily smooth state estimates, with adaptive parameters online adjusted by the triggering state estimation errors. It is shown that the designed event-triggered mechanism allows the proposed adaptive backstepping control scheme to achieve asymptotic convergence even in the presence of state discretization.
科研通智能强力驱动
Strongly Powered by AbleSci AI