Inhibition Mechanism of Weakly Solvating Electrolyte against Capacity Fade Caused by Mn (II) Deposition in Lithium-Ion Batteries

电解质 锂(药物) 溶剂化 离子 沉积(地质) 溶解 无机化学 化学 化学工程 电极 物理化学 有机化学 内分泌学 工程类 古生物学 生物 医学 沉积物
作者
Junwei Zhang,Jinlong Sun,Xiaoling Cui,Feifei Zong,Yinong Wang,Dongni Zhao,Shiyou Li
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (8): 3100-3110 被引量:9
标识
DOI:10.1021/acssuschemeng.3c07007
摘要

The dissolution and deposition of Mn (II) are considered to be non-negligible factors of capacity fade in lithium-ion batteries. The high-concentration electrolytes (HCEs) can inhibit the deposition of Mn (II), but the high cost and viscosity limit their practical application. Herein, the weakly solvating solvent tetrahydrofuran (THF) is selected to regulate the solvation structure, inspired by the inhibition mechanism of HCEs. We find that the high proportion of contact ion pairs and aggregates formed in THF-based weakly solvating electrolyte brings about a significant increase in the lowest unoccupied orbital value of the solvation structure of Mn (II) and achieves almost 100% capacity retention during the first 100 cycles at the charge–discharge rate of 0.5 C. Moreover, the binding energy between Mn (II) and other components in the solvation structure remarkably increases due to more anions coordinating with Mn (II). This immobilizes Mn (II) in the bulk electrolyte and inhibits its deposition on the anode. Besides, benefiting from anion-rich solvation structure in weakly solvating electrolyte, a stable and uniform solid electrolyte interphase rich in inorganics is formed. It not only suppresses the reduction and deposition of Mn (II), but also promotes the migration kinetics of Li+ across the interfaces, consequently inhibiting the capacity fade. This study provides a new strategy for designing electrolyte systems with low viscosity, low cost, and high resistance to Mn (II) deposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
对称破缺发布了新的文献求助10
1秒前
2秒前
Yin完成签到,获得积分10
2秒前
3秒前
4秒前
杨小鸿发布了新的文献求助10
4秒前
清爽语柳发布了新的文献求助10
4秒前
可爱的函函应助王子采纳,获得10
5秒前
huangyu完成签到,获得积分10
5秒前
yy发布了新的文献求助10
5秒前
魁魁完成签到,获得积分10
5秒前
6秒前
wuming发布了新的文献求助10
6秒前
情怀应助ffy采纳,获得10
7秒前
Eden发布了新的文献求助10
8秒前
jiang发布了新的文献求助10
9秒前
pluto完成签到,获得积分0
9秒前
10秒前
三块石头完成签到,获得积分10
11秒前
君故关注了科研通微信公众号
12秒前
13秒前
13秒前
周公完成签到,获得积分20
13秒前
HY完成签到,获得积分10
14秒前
科研通AI6.1应助dddd采纳,获得10
16秒前
16秒前
加菲丰丰举报Ico求助涉嫌违规
17秒前
18秒前
刘JX发布了新的文献求助30
18秒前
无花果应助daniel2233采纳,获得10
18秒前
18秒前
王正正完成签到,获得积分10
19秒前
王子发布了新的文献求助10
19秒前
科目三应助云止采纳,获得10
19秒前
19秒前
20秒前
20秒前
英俊的铭应助hh采纳,获得10
21秒前
痴情的香魔完成签到,获得积分10
21秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060